CM
Cathrine Myhre
Author with expertise in Atmospheric Aerosols and their Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
2,305
h-index:
37
/
i10-index:
58
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009

Kjetil Tørseth et al.Jun 22, 2012
Abstract. European scale harmonized monitoring of atmospheric composition was initiated in the early 1970s, and the activity has generated a comprehensive dataset (available at http://www.emep.int) which allows the evaluation of regional and spatial trends of air pollution during a period of nearly 40 yr. Results from the monitoring made within EMEP, the European Monitoring and Evaluation Programme, show large reductions in ambient concentrations and deposition of sulphur species during the last decades. Reductions are in the order of 70–90% since the year 1980, and correspond well with reported emission changes. Also reduction in emissions of nitrogen oxides (NOx) are reflected in the measurements, with an average decrease of nitrogen dioxide and nitrate in precipitation by about 23% and 25% respectively since 1990. Only minor reductions are however seen since the late 1990s. The concentrations of total nitrate in air have decreased on average only by 8% since 1990, and fewer sites show a significant trend. A majority of the EMEP sites show a decreasing trend in reduced nitrogen both in air and precipitation on the order of 25% since 1990. Deposition of base cations has decreased during the past 30 yr, and the pH in precipitation has increased across Europe. Large inter annual variations in the particulate matter mass concentrations reflect meteorological variability, but still there is a relatively clear overall decrease at several sites during the last decade. With few observations going back to the 1990s, the observed chemical composition is applied to document a change in particulate matter (PM) mass even since 1980. These data indicate an overall reduction of about 5 μg m−3 from sulphate alone. Despite the significant reductions in sulphur emissions, sulphate still remains one of the single most important compounds contributing to regional scale aerosol mass concentration. Long-term ozone trends at EMEP sites show a mixed pattern. The year-to-year variability in ozone due to varying meteorological conditions is substantial, making it hard to separate the trends caused by emission change from other effects. For the Nordic countries the data indicate a reduced occurrence of very low concentrations. The most pronounced change in the frequency distribution is seen at sites in the UK and the Netherlands, showing a reduction in the higher values. Smaller changes are seen in Germany, while in Switzerland and Austria, no change is seen in the frequency distribution of ozone. The lack of long-term data series is a major obstacle for studying trends in volatile organic compounds (VOC). The scatter in the data is large, and significant changes are only found for certain components and stations. Concentrations of the heavy metals lead and cadmium have decreased in both air and precipitation during the last 20 yr, with reductions in the order of 80–90% for Pb and 64–84% for Cd (precipitation and air respectively). The measurements of total gaseous mercury indicate a dramatic decrease in concentrations during 1980 to about 1993. Trends in hexachlorocyclohexanes (HCHs) show a significant decrease in annual average air concentrations. For other persistent organic pollutants (POPs) the patterns is mixed, and differs between sites and between measurements in air versus precipitation.
0
Paper
Citation685
0
Save
0

Very Strong Atmospheric Methane Growth in the 4 Years 2014–2017: Implications for the Paris Agreement

E. Nisbet et al.Feb 5, 2019
Abstract Atmospheric methane grew very rapidly in 2014 (12.7 ± 0.5 ppb/year), 2015 (10.1 ± 0.7 ppb/year), 2016 (7.0 ± 0.7 ppb/year), and 2017 (7.7 ± 0.7 ppb/year), at rates not observed since the 1980s. The increase in the methane burden began in 2007, with the mean global mole fraction in remote surface background air rising from about 1,775 ppb in 2006 to 1,850 ppb in 2017. Simultaneously the 13 C/ 12 C isotopic ratio (expressed as δ 13 C CH4 ) has shifted, now trending negative for more than a decade. The causes of methane's recent mole fraction increase are therefore either a change in the relative proportions (and totals) of emissions from biogenic and thermogenic and pyrogenic sources, especially in the tropics and subtropics, or a decline in the atmospheric sink of methane, or both. Unfortunately, with limited measurement data sets, it is not currently possible to be more definitive. The climate warming impact of the observed methane increase over the past decade, if continued at >5 ppb/year in the coming decades, is sufficient to challenge the Paris Agreement, which requires sharp cuts in the atmospheric methane burden. However, anthropogenic methane emissions are relatively very large and thus offer attractive targets for rapid reduction, which are essential if the Paris Agreement aims are to be attained.
0
Paper
Citation605
0
Save
0

Global and regional trends of atmospheric sulfur

Wenche Aas et al.Jan 30, 2019
Abstract The profound changes in global SO 2 emissions over the last decades have affected atmospheric composition on a regional and global scale with large impact on air quality, atmospheric deposition and the radiative forcing of sulfate aerosols. Reproduction of historical atmospheric pollution levels based on global aerosol models and emission changes is crucial to prove that such models are able to predict future scenarios. Here, we analyze consistency of trends in observations of sulfur components in air and precipitation from major regional networks and estimates from six different global aerosol models from 1990 until 2015. There are large interregional differences in the sulfur trends consistently captured by the models and observations, especially for North America and Europe. Europe had the largest reductions in sulfur emissions in the first part of the period while the highest reduction came later in North America and East Asia. The uncertainties in both the emissions and the representativity of the observations are larger in Asia. However, emissions from East Asia clearly increased from 2000 to 2005 followed by a decrease, while in India a steady increase over the whole period has been observed and modelled. The agreement between a bottom-up approach, which uses emissions and process-based chemical transport models, with independent observations gives an improved confidence in the understanding of the atmospheric sulfur budget.
0
Paper
Citation296
0
Save
0

AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations

Jonas Gliß et al.Jan 6, 2021
Abstract. Within the framework of the AeroCom (Aerosol Comparisons between Observations and Models) initiative, the state-of-the-art modelling of aerosol optical properties is assessed from 14 global models participating in the phase III control experiment (AP3). The models are similar to CMIP6/AerChemMIP Earth System Models (ESMs) and provide a robust multi-model ensemble. Inter-model spread of aerosol species lifetimes and emissions appears to be similar to that of mass extinction coefficients (MECs), suggesting that aerosol optical depth (AOD) uncertainties are associated with a broad spectrum of parameterised aerosol processes. Total AOD is approximately the same as in AeroCom phase I (AP1) simulations. However, we find a 50 % decrease in the optical depth (OD) of black carbon (BC), attributable to a combination of decreased emissions and lifetimes. Relative contributions from sea salt (SS) and dust (DU) have shifted from being approximately equal in AP1 to SS contributing about 2∕3 of the natural AOD in AP3. This shift is linked with a decrease in DU mass burden, a lower DU MEC, and a slight decrease in DU lifetime, suggesting coarser DU particle sizes in AP3 compared to AP1. Relative to observations, the AP3 ensemble median and most of the participating models underestimate all aerosol optical properties investigated, that is, total AOD as well as fine and coarse AOD (AODf, AODc), Ångström exponent (AE), dry surface scattering (SCdry), and absorption (ACdry) coefficients. Compared to AERONET, the models underestimate total AOD by ca. 21 % ± 20 % (as inferred from the ensemble median and interquartile range). Against satellite data, the ensemble AOD biases range from −37 % (MODIS-Terra) to −16 % (MERGED-FMI, a multi-satellite AOD product), which we explain by differences between individual satellites and AERONET measurements themselves. Correlation coefficients (R) between model and observation AOD records are generally high (R>0.75), suggesting that the models are capable of capturing spatio-temporal variations in AOD. We find a much larger underestimate in coarse AODc (∼ −45 % ± 25 %) than in fine AODf (∼ −15 % ± 25 %) with slightly increased inter-model spread compared to total AOD. These results indicate problems in the modelling of DU and SS. The AODc bias is likely due to missing DU over continental land masses (particularly over the United States, SE Asia, and S. America), while marine AERONET sites and the AATSR SU satellite data suggest more moderate oceanic biases in AODc. Column AEs are underestimated by about 10 % ± 16 %. For situations in which measurements show AE > 2, models underestimate AERONET AE by ca. 35 %. In contrast, all models (but one) exhibit large overestimates in AE when coarse aerosol dominates (bias ca. +140 % if observed AE < 0.5). Simulated AE does not span the observed AE variability. These results indicate that models overestimate particle size (or underestimate the fine-mode fraction) for fine-dominated aerosol and underestimate size (or overestimate the fine-mode fraction) for coarse-dominated aerosol. This must have implications for lifetime, water uptake, scattering enhancement, and the aerosol radiative effect, which we can not quantify at this moment. Comparison against Global Atmosphere Watch (GAW) in situ data results in mean bias and inter-model variations of −35 % ± 25 % and −20 % ± 18 % for SCdry and ACdry, respectively. The larger underestimate of SCdry than ACdry suggests the models will simulate an aerosol single scattering albedo that is too low. The larger underestimate of SCdry than ambient air AOD is consistent with recent findings that models overestimate scattering enhancement due to hygroscopic growth. The broadly consistent negative bias in AOD and surface scattering suggests an underestimate of aerosol radiative effects in current global aerosol models. Considerable inter-model diversity in the simulated optical properties is often found in regions that are, unfortunately, not or only sparsely covered by ground-based observations. This includes, for instance, the Sahara, Amazonia, central Australia, and the South Pacific. This highlights the need for a better site coverage in the observations, which would enable us to better assess the models, but also the performance of satellite products in these regions. Using fine-mode AOD as a proxy for present-day aerosol forcing estimates, our results suggest that models underestimate aerosol forcing by ca. −15 %, however, with a considerably large interquartile range, suggesting a spread between −35 % and +10 %.
0

The Integrated Carbon Observation System in Europe

Jouni Heiskanen et al.Oct 14, 2021
Abstract Since 1750, land-use change and fossil fuel combustion has led to a 46% increase in the atmospheric carbon dioxide (CO 2 ) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limit global temperature increases to well below 2°C above preindustrial levels. Increasing levels of CO 2 and other greenhouse gases (GHGs), such as methane (CH 4 ) and nitrous oxide (N 2 O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere are sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature, and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers’ decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface, and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.
0
Paper
Citation187
0
Save