JH
Jennifer Hall
Author with expertise in Stellar Astrophysics and Exoplanet Studies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
3,268
h-index:
24
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A closely packed system of low-mass, low-density planets transiting Kepler-11

Jack Lissauer et al.Feb 1, 2011
When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star, which we call Kepler-11, that reveal six transiting planets, five with orbital periods between 10 and 47 days and a sixth planet with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end of planet formation. NASA's Kepler mission, a space observatory designed to detect and study extrasolar planets that transit across the disk of their host star, has hit the jackpot with the discovery of a six-planet system orbiting a Sun-like star now named Kepler-11. Five of the planets have orbital periods of between 10 and 47 days, and these are among the smallest for which size and mass have both been measured. The sixth and outermost transiting planet has been less well characterized thus far. Only one other star has more than one confirmed transiting planet (Kepler-9, which has three). This newly discovered system resembles our own Solar System in being close to coplanar, but Kepler-11's planets orbit much closer to their star. Kepler is due to continue to return data on Kepler-11 and its planets for some time yet, and it should provide many valuable constraints on models of the formation and evolution of solar systems in general. When an extrasolar planet passes in front of its star (transits), its radius can be measured from the decrease in starlight and its orbital period from the time between transits. This study reports Kepler spacecraft observations of a single Sun-like star that reveal six transiting planets, five with orbital periods between 10 and 47 days plus a sixth one with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases.
0
Paper
Citation591
0
Save
0

OVERVIEW OF THE KEPLER SCIENCE PROCESSING PIPELINE

Jon Jenkins et al.Mar 30, 2010
The Kepler Mission Science Operations Center (SOC) performs several critical functions including managing the ~156,000 target stars, associated target tables, science data compression tables and parameters, as well as processing the raw photometric data downlinked from the spacecraft each month. The raw data are first calibrated at the pixel level to correct for bias, smear induced by a shutterless readout, and other detector and electronic effects. A background sky flux is estimated from ~4500 pixels on each of the 84 CCD readout channels, and simple aperture photometry is performed on an optimal aperture for each star. Ancillary engineering data and diagnostic information extracted from the science data are used to remove systematic errors in the flux time series that are correlated with these data prior to searching for signatures of transiting planets with a wavelet-based, adaptive matched filter. Stars with signatures exceeding 7.1 sigma are subjected to a suite of statistical tests including an examination of each star's centroid motion to reject false positives caused by background eclipsing binaries. Physical parameters for each planetary candidate are fitted to the transit signature, and signatures of additional transiting planets are sought in the residual light curve. The pipeline is operational, finding planetary signatures and providing robust eliminations of false positives.
0

PLANETARY CANDIDATES OBSERVED BY KEPLER . III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA

Natalie Batalha et al.Feb 5, 2013
New transiting planet candidates are identified in 16 months (2009 May-2010 September) of data from the Kepler spacecraft.Nearly 5000 periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1108 viable new planet candidates, bringing the total count up to over 2300.Improved vetting metrics are employed, contributing to higher catalog reliability.Most notable is the noise-weighted robust averaging of multiquarter photo-center offsets derived from difference image analysis that identifies likely background eclipsing binaries.Twenty-two months of photometry are used for the purpose of characterizing each of the candidates.Ephemerides (transit epoch, T 0 , and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R P /R ), reduced semimajor axis (d/R ), and impact parameter (b).The largest fractional increases are seen for the smallest planet candidates (201% for candidates smaller than 2 R ⊕ compared to 53% for candidates larger than 2 R ⊕ ) and those at longer orbital periods (124% for candidates outside of 50 day orbits versus 86% for candidates inside of 50 day orbits).The gains are larger than expected from increasing the observing window from 13 months (Quarters 1-5) to 16 months (Quarters 1-6) even in regions of parameter space where one would have expected the previous catalogs to be complete.Analyses of planet frequencies based on previous catalogs will be affected by such incompleteness.The fraction of all planet candidate host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident.The progression
0

Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes

P. Beck et al.Dec 6, 2011
The core rotation rate of a star, a key indicator of its evolutionary state, cannot be measured directly because the core is inaccessible to direct observation. This paper presents a method for calculating core rotation in an evolved star. The Fourier spectra of brightness variations of four stars derived from Kepler spacecraft data were used to measure the rotational frequency splitting of the recently identified 'mixed modes' caused by rotation in red giant stars. The results suggest that the core of a red giant rotates at least ten times faster than the surface. When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star’s radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this1,2. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected ‘mixed modes’3,4. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior1,5,6.