MF
M. Fanelli
Author with expertise in Stellar Astrophysics and Exoplanet Studies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
2,467
h-index:
24
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Kepler Presearch Data Conditioning I—Architecture and Algorithms for Error Correction in Kepler Light Curves

Martin Stumpe et al.Sep 1, 2012
Kepler provides light curves of 156,000 stars with unprecedented precision. However, the raw data as they come from the spacecraft contain significant systematic and stochastic errors. These errors, which include discontinuities, systematic trends, and outliers, obscure the astrophysical signals in the light curves. To correct these errors is the task of the Presearch Data Conditioning (PDC) module of the Kepler data analysis pipeline. The original version of PDC in Kepler did not meet the extremely high performance requirements for the detection of miniscule planet transits or highly accurate analysis of stellar activity and rotation. One particular deficiency was that astrophysical features were often removed as a side-effect to removal of errors. In this paper we introduce the completely new and significantly improved version of PDC which was implemented in Kepler SOC 8.0. This new PDC version, which utilizes a Bayesian approach for removal of systematics, reliably corrects errors in the light curves while at the same time preserving planet transits and other astrophysically interesting signals. We describe the architecture and the algorithms of this new PDC module, show typical errors encountered in Kepler data, and illustrate the corrections using real light curve examples.
0

A closely packed system of low-mass, low-density planets transiting Kepler-11

Jack Lissauer et al.Feb 1, 2011
When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star, which we call Kepler-11, that reveal six transiting planets, five with orbital periods between 10 and 47 days and a sixth planet with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end of planet formation. NASA's Kepler mission, a space observatory designed to detect and study extrasolar planets that transit across the disk of their host star, has hit the jackpot with the discovery of a six-planet system orbiting a Sun-like star now named Kepler-11. Five of the planets have orbital periods of between 10 and 47 days, and these are among the smallest for which size and mass have both been measured. The sixth and outermost transiting planet has been less well characterized thus far. Only one other star has more than one confirmed transiting planet (Kepler-9, which has three). This newly discovered system resembles our own Solar System in being close to coplanar, but Kepler-11's planets orbit much closer to their star. Kepler is due to continue to return data on Kepler-11 and its planets for some time yet, and it should provide many valuable constraints on models of the formation and evolution of solar systems in general. When an extrasolar planet passes in front of its star (transits), its radius can be measured from the decrease in starlight and its orbital period from the time between transits. This study reports Kepler spacecraft observations of a single Sun-like star that reveal six transiting planets, five with orbital periods between 10 and 47 days plus a sixth one with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases.
0
Paper
Citation591
0
Save
0

KeplerPresearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction

Jeffrey Smith et al.Sep 1, 2012
With the unprecedented photometric precision of the Kepler Spacecraft, significant systematic and stochastic errors on transit signal levels are observable in the Kepler photometric data. These errors, which include discontinuities, outliers, systematic trends and other instrumental signatures, obscure astrophysical signals. The Presearch Data Conditioning (PDC) module of the Kepler data analysis pipeline tries to remove these errors while preserving planet transits and other astrophysically interesting signals. The completely new noise and stellar variability regime observed in Kepler data poses a significant problem to standard cotrending methods such as SYSREM and TFA. Variable stars are often of particular astrophysical interest so the preservation of their signals is of significant importance to the astrophysical community. We present a Bayesian Maximum A Posteriori (MAP) approach where a subset of highly correlated and quiet stars is used to generate a cotrending basis vector set which is in turn used to establish a range of "reasonable" robust fit parameters. These robust fit parameters are then used to generate a Bayesian Prior and a Bayesian Posterior Probability Distribution Function (PDF) which when maximized finds the best fit that simultaneously removes systematic effects while reducing the signal distortion and noise injection which commonly afflicts simple least-squares (LS) fitting. A numerical and empirical approach is taken where the Bayesian Prior PDFs are generated from fits to the light curve distributions themselves.
0

SAUNAS. I. Searching for Low Surface Brightness X-Ray Emission with Chandra/ACIS

Alejandro Borlaff et al.May 30, 2024
Abstract We present Selective Amplification of Ultra Noisy Astronomical Signal ( SAUNAS ), a pipeline designed for detecting diffuse X-ray emission in the data obtained with the Advanced CCD Imaging Spectrometer (ACIS) of the Chandra X-ray Observatory. SAUNAS queries the available observations in the Chandra archive and performs photometric calibration, point-spread function modeling and deconvolution, point-source removal, adaptive smoothing, and background correction. This pipeline builds on existing and well-tested software including CIAO , VorBin , and LIRA . We characterize the performance of SAUNAS through several quality performance tests and demonstrate the broad applications and capabilities of SAUNAS using two galaxies already known to show X-ray-emitting structures. SAUNAS successfully detects the 30 kpc X-ray superwind of NGC 3079 using Chandra/ACIS data sets, matching the spatial distribution detected with more sensitive XMM-Newton observations. The analysis performed by SAUNAS reveals an extended low surface brightness source in the field of UGC 5101 in the 0.3–1.0 keV and 1.0–2.0 keV bands. This source is potentially a background galaxy cluster or a hot gas plume associated with UGC 5101. SAUNAS demonstrates its ability to recover previously undetected structures in archival data, expanding exploration into the low surface brightness X-ray Universe with Chandra/ACIS.