AZ
Adriano Zecchina
Author with expertise in Chemistry and Applications of Metal-Organic Frameworks
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(0% Open Access)
Cited by:
2,557
h-index:
93
/
i10-index:
344
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Local Structure of Framework Cu(II) in HKUST-1 Metallorganic Framework: Spectroscopic Characterization upon Activation and Interaction with Adsorbates

Carmelo Prestipino et al.Feb 1, 2006
XRD, UV−Vis, EXAFS, XANES, and Raman techniques have been used to study the removal of water molecules coordinated to the Cu(II) framework atoms of the novel HKUST-1 metal-organic framework. The dehydration process preserves the crystalline nature of the material, just causing a reduction of the cell volume due to the shrinking of the [Cu2C4O8] cage. The removal of adsorbed H2O molecule makes the framework Cu(II) sites available for interaction with other probe molecules. In situ IR spectroscopy has evidenced the formation at liquid nitrogen temperature of labile Cu(II)···CO adducts characterized by a ν̃(C−O) = 2178 cm-1 and at 15 K of Cu(II)···H2 adducts characterized by a ν̃(H−H) = 4100 cm-1. To the best of our knowledge, we have observed for the first time a clear signal of Cu(II) carbonyl and dihydrogen complexes formed inside a crystalline microporous hosting matrix. The sinking of the oxygens of the carboxyl units, undergone by the Cu(II) framework ions in the dehydration process, is responsible for the rather low coordinative unsaturation of Cu(II). The important shielding effect of the four oxygen framework atoms is testified by the low polarization factor of the Cu(II) site probed by both CO and H2 molecules.
0

Role of Exposed Metal Sites in Hydrogen Storage in MOFs

Jenny Vitillo et al.Jun 6, 2008
The role of exposed metal sites in increasing the H2 storage performances in metal-organic frameworks (MOFs) has been investigated by means of IR spectrometry. Three MOFs have been considered: MOF-5, with unexposed metal sites, and HKUST-1 and CPO-27-Ni, with exposed Cu(2+) and Ni(2+), respectively. The onset temperature of spectroscopic features associated with adsorbed H2 correlates with the adsorption enthalpy obtained by the VTIR method and with the shift experienced by the H-H stretching frequency. This relationship can be ascribed to the different nature and accessibility of the metal sites. On the basis of a pure energetic evaluation, it was observed that the best performance was shown by CPO-27-Ni that exhibits also an initial adsorption enthalpy of -13.5 kJ mol(-1), the highest yet observed for a MOF. Unfortunately, upon comparison of the hydrogen amounts stored at high pressure, the hydrogen capacities in these conditions are mostly dependent on the surface area and total pore volume of the material. This means that if control of MOF surface area can benefit the total stored amounts, only the presence of a great number of strong adsorption sites can make the (P, T) storage conditions more economically favorable. These observations lead to the prediction that efficient H2 storage by physisorption can be obtained by increasing the surface density of strong adsorption sites.
0

Vibrational Structure of Titanium Silicate Catalysts. A Spectroscopic and Theoretical Study

Gabriele Ricchiardi et al.Oct 30, 2001
A thorough analysis of the vibrational features of the titanium silicalite-1 (TS-1) catalyst is presented, based on quantitative IR measurements, Raman and resonant Raman experiments, quantitative XANES, and quantum chemical calculations on cluster and periodic models. The linear correlation of the intensity of the IR and Raman bands located at 960 and 1125 cm(-1) and the XANES peak at 4967 eV with the amount of tetrahedral Ti are quantitatively demonstrated. Raman and resonant Raman spectra of silicalite and TS-1 with variable Ti content are presented, showing main features at 960 and 1125 cm(-1) associated with titanium insertion into the zeolite framework. The enhancement of the intensity of the 1125 cm(-1) feature and the invariance of the 960 cm(-1) feature in UV-Raman experiments, are discussed in terms of resonant Raman selection rules. Quantum chemical calculations on cluster models Si[OSi(OH)(3)](4) and Ti[OSi(OH)(3)](4) at the B3LYP/6-31G(d) level of theory provide the basis for the assignment of the main vibrational contributions and for the understanding of Raman enhancement. The resonance-enhanced 1125 cm(-1) mode is unambiguously associated with a totally symmetric vibration of the TiO(4) tetrahedron, achieved through in-phase antisymmetric stretching of the four connected Ti-O-Si bridges. This vibration can also be described as a totally symmetric stretching of the four Si-O bonds pointing toward Ti. The resonance enhancement of this feature is explained in terms of the electronic structure of the Ti-containing moiety. Asymmetric stretching modes of TO(4) units show distinct behavior when (i) T is occupied by Si as in perfect silicalite, (ii) T is occupied by Ti as in TS-1, or (iii) the oxygen atom belongs to an OH group, such as in terminal tetrahedra of cluster models and in real defective zeolites. Asymmetric SiO(4) and TiO(4) stretching modes appear above and below 1000 cm(-1), respectively, when they are achieved through antisymmetric stretching of the T-O-Si bridges, and around 800 cm(-1) (in both SiO(4) and TiO(4)) when they involve symmetric stretching of the T-O-Si units. In purely siliceous models, the transparency gap between the main peaks at 800 and 1100 cm(-1) contains only vibrational features associated with terminal Si-OH groups, while in Ti-containing models it contains also the above-mentioned asymmetric TiO(4) modes, which in turn are strongly coupled with Si-OH stretching modes. Calculations on periodic models of silicalite and TS-1 free of OH groups using the QMPOT embedding method correctly reproduce the transparency gap of silicalite and the appearance of asymmetric TiO(4) vibrations at 960 cm(-1) in TS-1. Finally, we demonstrate, for the first time, that the distortion of the tetrahedral symmetry around Ti caused by water adsorption quenches the UV-Raman enhancement of the 1125 cm(-1) band.