SW
Sibylle Wenzel
Author with expertise in Lithium-ion Battery Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(20% Open Access)
Cited by:
2,523
h-index:
20
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode

Sibylle Wenzel et al.Mar 10, 2016
The very high ionic conductivity of Li10GeP2S12 (LGPS) makes it a potential solid electrolyte for lithium all-solid-state batteries. Besides the high ionic conductivity, another key requirement is the stability of the solid electrolyte against degradation reactions with the electrodes; here, we analyze the reaction of LGPS with lithium metal. In situ X-ray photoelectron spectroscopy (XPS), in combination with time-resolved electrochemical measurements offers detailed information on the chemical reactions at the Li/LGPS interface. The decomposition of Li10GeP2S12 leads to the formation of an interphase composed of Li3P, Li2S, and Li–Ge alloy, which is in perfect agreement with theoretical predictions, and an increase of the interfacial resistance. These results highlight the necessity to perform long-term, time-resolved electrochemical measurements when evaluating potential new solid electrolytes for solid-state batteries. The kinetics of this interphase growth—comparable to SEI formation on lithium anodes in liquid electrolytes—seems to be governed by diffusion across the interphase, as a square root time dependence is observed.
0
Citation673
0
Save
0

Interphase formation on lithium solid electrolytes—An in situ approach to study interfacial reactions by photoelectron spectroscopy

Sibylle Wenzel et al.Jun 18, 2015
Interfacial reactions of solid electrolytes play an important role in all-solid-state batteries. The interface resistances—describing charge transfer between electrode and solid electrolyte—and the cycle stability of the battery depend on the chemical and physical properties of the interfaces. As buried interfaces in all-solid-state batteries are difficult to investigate, the knowledge on interfacial reactions and the interfacial kinetics is poor—especially in case of the interface between solid electrolytes and alkali metal. Here, a simple and straightforward technique for the investigation of the formation of an interfacial reaction zone (interphase) at the surface of a solid electrolyte is presented. The key concept is to use the internal argon ion sputter gun in a standard lab-scale photoelectron spectrometer to deposit thin metal films (e.g. lithium) on the sample surface and to study the reaction between metal and solid electrolyte by photoelectron spectroscopy directly after deposition. As an example for the formation of interphases on solid electrolyte materials, lithium is deposited on lithium lanthanum titanate (LLTO), and the reaction is observed by XPS in situ. The obtained spectra show the formation of reduced titanium ions and titanium metal due to the reaction of LLTO with Li—i.e. by lithium insertion. The presented experimental approach can be used for the deposition of virtually any metal on the sample and can be easily adapted to a wide range of applications such as enhancing the electronic conductivity of samples in situ, studies of electronic contact properties in devices, detailed analysis of emission depth distribution functions for thin overlayers or to create internal binding energy standards.
0

Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes

Sibylle Wenzel et al.Jul 14, 2017
Lithium superionic conductors with the argyrodite structure Li6PS5X (X = Cl, Br, I) are considered as suitable candidates for the fabrication of all-solid-state batteries (SSB) facilitating Li metal anodes. The use of metal anodes is required to achieve SSB with high energy densities, however, the thermodynamic stability of the different argyrodites in contact with Li metal has not been systematically investigated yet. The stability against lithium metal is of practical interest for long-term stability of SSB utilizing argyrodites. Here, data on the stability of Li6PS5X (X = Cl, Br, I) in contact with Li metal are reported, obtained from an in situ X-ray photoemission technique in combination with time-resolved impedance spectroscopy. In contact with Li metal, Li6PS5X decomposes into an interphase composed of Li3P, Li2S and LiX, which serves as an SEI and results in an increasing interfacial resistance. The growth of the SEI and the resulting resistance evolution is further analyzed in terms of its kinetics and is compared to other thiophosphate superionic conductors. Li6PS5I is found to show particularly strong SEI formation with severe resistance growth.
0
Citation453
0
Save
0

Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte

Sibylle Wenzel et al.Dec 29, 2015
The properties of the interface between solid electrolytes and electrode materials are of vital importance for the performance of all solid-state batteries (ASSB). Unwanted reactions between alkali metal electrodes and the solid electrolyte can lead to the formation of compounds that either facilitate or block the ion transfer kinetics. In particular for lithium solid electrolytes in the Li2S–P2S5 system with very high lithium ion conductivity only little is known about interfacial reactions with lithium metal. Here we monitor the formation of an interphase between Li7P3S11 and lithium metal by a combined analytical approach, comprising in situ photoelectron spectroscopy and time-dependent electrochemical impedance spectroscopy. Utilizing a self-developed XPS peak fit model for Li7P3S11, we identify the components of this interphase, discuss its properties and develop a qualitative model, which shows that the reaction between electrolyte and lithium metal, and hence, the interphase growth, is limited to a few nm. The solid electrolyte being used is a highly crystalline form of the superionic conductor Li7P3S11 without any residual glassy phase, and the synthesis of this Li7P3S11 phase is also reported.
0
Citation418
0
Save