YL
Yongjia Li
Author with expertise in Electrocatalysis for Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(29% Open Access)
Cited by:
1,485
h-index:
24
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Stabilization of High-Performance Oxygen Reduction Reaction Pt Electrocatalyst Supported on Reduced Graphene Oxide/Carbon Black Composite

Yujing Li et al.Jul 11, 2012
Oxygen reduction reaction (ORR) catalyst supported by hybrid composite materials is prepared by well-mixing carbon black (CB) with Pt-loaded reduced graphene oxide (RGO). With the insertion of CB particles between RGO sheets, stacking of RGO can be effectively prevented, promoting diffusion of oxygen molecules through the RGO sheets and enhancing the ORR electrocatalytic activity. The accelerated durability test (ADT) demonstrates that the hybrid supporting material can dramatically enhance the durability of the catalyst and retain the electrochemical surface area (ECSA) of Pt: the final ECSA of the Pt nanocrystal on the hybrid support after 20 000 ADT cycles is retained at >95%, much higher than the commercially available catalyst. We suggest that the unique 2D profile of the RGO functions as a barrier, preventing leaching of Pt into the electrolyte, and the CB in the vicinity acts as active sites to recapture/renucleate the dissolved Pt species. We furthermore demonstrate that the working mechanism can be applied to the commercial Pt/C product to greatly enhance its durability.
0

Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics

Gongming Wang et al.Oct 2, 2015
Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that the resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. The ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems.
0

Near-Infrared Plasmonic-Enhanced Solar Energy Harvest for Highly Efficient Photocatalytic Reactions

Jiabin Cui et al.Sep 7, 2015
We report a highly efficient photocatalyst comprised of Cu7S4@Pd heteronanostructures with plasmonic absorption in the near-infrared (NIR)-range. Our results indicated that the strong NIR plasmonic absorption of Cu7S4@Pd facilitated hot carrier transfer from Cu7S4 to Pd, which subsequently promoted the catalytic reactions on Pd metallic surface. We confirmed such enhancement mechanism could effectively boost the sunlight utilization in a wide range of photocatalytic reactions, including the Suzuki coupling reaction, hydrogenation of nitrobenzene, and oxidation of benzyl alcohol. Even under irradiation at 1500 nm with low power density (0.45 W/cm2), these heteronanostructures demonstrated excellent catalytic activities. Under solar illumination with power density as low as 40 mW/cm2, nearly 80–100% of conversion was achieved within 2 h for all three types of organic reactions. Furthermore, recycling experiments showed the Cu7S4@Pd were stable and could retain their structures and high activity after five cycles. The reported synthetic protocol can be easily extended to other Cu7S4@M (M = Pt, Ag, Au) catalysts, offering a new solution to design and fabricate highly effective photocatalysts with broad material choices for efficient conversion of solar energy to chemical energy in an environmentally friendly manner.
0
Paper
Citation257
0
Save
0

Advancements in Nanohydroxyapatite: Synthesis, Biomedical Applications, and Composite Developments

Zhao Rui et al.Nov 2, 2024
Abstract Nanohydroxyapatite (nHA) is distinguished by its exceptional biocompatibility, bioactivity, and biodegradability, qualities attributed to its similarity to the mineral component of human bone. This review discusses the synthesis techniques of nHA, highlighting how these methods shape its physicochemical attributes and, in turn, its utility in biomedical applications. The versatility of nHA is further enhanced by doping with biologically significant ions like magnesium or zinc, which can improve its bioactivity and confer therapeutic properties. Notably, nHA-based composites, incorporating metal, polymeric, and bioceramic scaffolds, exhibit enhanced osteoconductivity and osteoinductivity. In orthopedic field, nHA and its composites serve effectively as bone graft substitutes, showing exceptional osteointegration and vascularization capabilities. In dentistry, these materials contribute to enamel remineralization, mitigate tooth sensitivity, and are employed in surface modification of dental implants. For cancer therapy, nHA composites offer a promising strategy to inhibit tumor growth while sparing healthy tissues. Furthermore, nHA-based composites are emerging as sophisticated platforms with high surface ratio for the delivery of drugs and bioactive substances, gradually releasing therapeutic agents for progressive treatment benefits. Overall, this review delineates the synthesis, modifications, and applications of nHA in various biomedical fields, shed light on the future advancements in biomaterials research.