PS
P. Saraceno
Author with expertise in Star Formation in Molecular Clouds and Protoplanetary Disks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
2,781
h-index:
42
/
i10-index:
68
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Clouds, filaments, and protostars: TheHerschel Hi-GAL Milky Way

S. Molinari et al.Jul 1, 2010
We present the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key program that will map the inner Galactic plane of the Milky Way in 5 bands. We outline our data reduction strategy and present some science highlights on the two observed 2° × 2° tiles approximately centered at l = 30° and l = 59°. The two regions are extremely rich in intense and highly structured extended emission which shows a widespread organization in filaments. Source SEDs can be built for hundreds of objects in the two fields, and physical parameters can be extracted, for a good fraction of them where the distance could be estimated. The compact sources (which we will call cores' in the following) are found for the most part to be associated with the filaments, and the relationship to the local beam-averaged column density of the filament itself shows that a core seems to appear when a threshold around AV ~ 1 is exceeded for the regions in the l = 59° field; a AV value between 5 and 10 is found for the l = 30° field, likely due to the relatively higher distances of the sources. This outlines an exciting scenario where diffuse clouds first collapse into filaments, which later fragment to cores where the column density has reached a critical level. In spite of core L/M ratios being well in excess of a few for many sources, we find core surface densities between 0.03 and 0.5 g cm-2. Our results are in good agreement with recent MHD numerical simulations of filaments forming from large-scale converging flows.
0

From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from theHerschelGould Belt Survey

Philippe André et al.Jul 1, 2010
We summarize the first results from the Gould Belt Survey, obtained toward the Aquila rift and Polaris Flare regions during the science demonstration phase of Herschel. Our 70–500 μm images taken in parallel mode with the SPIRE and PACS cameras reveal a wealth of filamentary structure, as well as numerous dense cores embedded in the filaments. Between ~350 and 500 prestellar cores and ~45–60 Class 0 protostars can be identified in the Aquila field, while ~300 unbound starless cores and no protostars are observed in the Polaris field. The prestellar core mass function (CMF) derived for the Aquila region bears a strong resemblance to the stellar initial mass function (IMF), already confirming the close connection between the CMF and the IMF with much better statistics than earlier studies. Comparing and contrasting our Herschel results in Aquila and Polaris, we propose an observationally-driven scenario for core formation according to which complex networks of long, thin filaments form first within molecular clouds, and then the densest filaments fragment into a number of prestellar cores via gravitational instability.
0

Hi-GAL: The Herschel Infrared Galactic Plane Survey

S. Molinari et al.Feb 26, 2010
Hi-GAL, the Herschel infrared Galactic Plane Survey, is an Open Time Key Project of the Herschel Space Observatory. It will make an unbiased photometric survey of the inner Galactic plane by mapping a 2° wide strip in the longitude range ∣l∣ < 60° in five wavebands between 70 μm and 500 μm. The aim of Hi-GAL is to detect the earliest phases of the formation of molecular clouds and high-mass stars and to use the optimum combination of Herschel wavelength coverage, sensitivity, mapping strategy, and speed to deliver a homogeneous census of star-forming regions and cold structures in the interstellar medium. The resulting representative samples will yield the variation of source temperature, luminosity, mass and age in a wide range of Galactic environments at all scales from massive YSOs in protoclusters to entire spiral arms, providing an evolutionary sequence for the formation of intermediate and high-mass stars. This information is essential to the formulation of a predictive global model of the role of environment and feedback in regulating the star-formation process. Such a model is vital to understanding star formation on galactic scales and in the early universe. Hi-GAL will also provide a science legacy for decades to come with incalculable potential for systematic and serendipitous science in a wide range of astronomical fields, enabling the optimum use of future major facilities such as JWST and ALMA.
0

Water in Star-forming Regions with theHerschel Space Observatory(WISH). I. Overview of Key Program and First Results

E. Dishoeck et al.Feb 1, 2011
`Water In Star-forming regions with Herschel' (WISH) is a key program on the Herschel Space Observatory designed to probe the physical and chemical structure of young stellar objects using water and related molecules and to follow the water abundance from collapsing clouds to planet-forming disks. About 80 sources are targeted covering a wide range of luminosities and evolutionary stages, from cold pre-stellar cores to warm protostellar envelopes and outflows to disks around young stars. Both the HIFI and PACS instruments are used to observe a variety of lines of H2O, H218O and chemically related species. An overview of the scientific motivation and observational strategy of the program is given together with the modeling approach and analysis tools that have been developed. Initial science results are presented. These include a lack of water in cold gas at abundances that are lower than most predictions, strong water emission from shocks in protostellar environments, the importance of UV radiation in heating the gas along outflow walls across the full range of luminosities, and surprisingly widespread detection of the chemically related hydrides OH+ and H2O+ in outflows and foreground gas. Quantitative estimates of the energy budget indicate that H2O is generally not the dominant coolant in the warm dense gas associated with protostars. Very deep limits on the cold gaseous water reservoir in the outer regions of protoplanetary disks are obtained which have profound implications for our understanding of grain growth and mixing in disks.