HC
Héctor Corzo
Author with expertise in Advancements in Density Functional Theory
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(87% Open Access)
Cited by:
43
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Photoelectron Spectra of Gd2O2 and Nonmonotonic Photon-Energy-Dependent Variations in Populations of Close-Lying Neutral States

Jarrett Mason et al.Jan 19, 2021
Photoelectron spectra of Gd2O2– obtained with photon energies ranging from 2.033 to 3.495 eV exhibit numerous close-lying neutral states with photon-energy-dependent relative intensities. Transitions to these states, which fall within the electron binding energy window of 0.9 and 1.6 eV, are attributed to one- or two-electron transitions to the ground and low-lying excited neutral states. An additional, similar manifold of electronic states is observed in an electron binding energy window of 2.1–2.8 eV, which cannot be assigned to any simple one-electron transitions. This study expands on previous work on the Sm2O– triatomic, which has a more complex electronic structure because of the 4f6 subshell occupancy of each Sm center. Because of the simpler electronic structure from the half-filled 4f7 subshell occupancy in Gd2O2 and Gd2O2–, the numerous close-lying transitions observed in the spectra are better resolved, allowing a more detailed view of the changes in relative intensities of individual transitions with photon energy. With supporting calculations on numerous possible close-lying electronic states, we suggest a potential description of the strong photoelectron–valence electron interactions that may result in the photon-energy-dependent changes in the observed spectra.
0

New Photoelectron–Valence Electron Interactions Evident in the Photoelectron Spectrum of Gd2O

Jarrett Mason et al.Nov 3, 2021
Evidence of strong photoelectron-valence electron (PEVE) interactions has been observed in the anion photoelectron (PE) spectra of several lanthanide suboxide clusters, which are exceptionally complex from an electronic structure standpoint and are strongly correlated systems. The PE spectrum of Gd2O-, which should have relatively simple electronic structure because of its half-filled 4f subshell, exhibits numerous electronic transitions. The electron affinity determined from the spectrum is 0.26 eV. The intensities of transitions to excited states increase relative to the lower-energy states with lower photon energy, which is consistent with shakeup transitions driven by time-dependent electron-neutral interactions. A group of intense spectral features that lie between electron binding energies of 0.7 and 2.3 eV are assigned to transitions involving detachment of an electron from outer-valence σu and σg orbitals that have large Gd 6s contributions. The spectra show parallel transition manifolds in general, which is consistent with detachment from these orbitals. However, several distinct perpendicular transitions are observed adjacent to several of the vertical transitions. A possible explanation invoking interaction between the ejected electron and the high-spin neutral is proposed. Specifically, the angular momentum of electrons ejected from σu or σg orbitals, which is l = 1, can switch to l = 0, 2 with an associated change in the Ms of the remnant neutral, which is spin-orbit coupling between a free electron and the spin of a neutral.
0

Comparison of Linear Response Theory, Projected Initial Maximum Overlap Method, and Molecular Dynamics-Based Vibronic Spectra: The Case of Methylene Blue

Ali Abou Taka et al.Apr 26, 2022
The simulation of optical spectra is essential to molecular characterization and, in many cases, critical for interpreting experimental spectra. The most common method for simulating vibronic absorption spectra relies on the geometry optimization and computation of normal modes for ground and excited electronic states. In this report, we show that the utilization of such a procedure within an adiabatic linear response (LR) theory framework may lead to state mixings and a breakdown of the Born-Oppenheimer approximation, resulting in a poor description of absorption spectra. In contrast, computing excited states via a self-consistent field method in conjunction with a maximum overlap model produces states that are not subject to such mixings. We show that this latter method produces vibronic spectra much more aligned with vertical gradient and molecular dynamics (MD) trajectory-based approaches. For the methylene blue chromophore, we compare vibronic absorption spectra computed with the following: an adiabatic Hessian approach with LR theory-optimized structures and normal modes, a vertical gradient procedure, the Hessian and normal modes of maximum overlap method-optimized structures, and excitation energy time-correlation functions generated from an MD trajectory. Because of mixing between the bright S1 and dark S2 surfaces near the S1 minimum, computing the adiabatic Hessian with LR theory and time-dependent density functional theory with the B3LYP density functional predicts a large vibronic shoulder for the absorption spectrum that is not present for any of the other methods. Spectral densities are analyzed and we compare the behavior of the key normal mode that in LR theory strongly couples to the optical excitation while showing S1/S2 state mixings. Overall, our study provides a note of caution in computing vibronic spectra using the excited-state adiabatic Hessian of LR theory-optimized structures and also showcases three alternatives that are less sensitive to adiabatic state mixing effects.
0

Photoelectron Spectra of Gd2O2− and Non-Monotonic Photon-Energy Dependent Variations in Populations of Close-Lying Neutral States

Jarrett Mason et al.Nov 16, 2020
<p>Photoelectron spectra of Gd<sub>2</sub>O<sub>2</sub><sup>−</sup> obtained with photon energies from 2.033 eV to 3.495 eV exhibit numerous close-lying neutral states with photon-energy-dependent relative intensities. Transitions to states falling within the electron binding energy window of 0.9 and 1.6 eV are attributed to one- or two-electron transitions to the ground and low-lying excited neutral states. An additional, manifold of electronic states observed in the 2.1 to 2.8 eV window cannot be assigned to any simple one-electron transitions. Because of the relatively simple electronic structure from the half-filled 4<i>f<sup>7</sup> </i>subshell occupancy in Gd<sub>2</sub>O<sub>2</sub><sup>–</sup>, the numerous transitions observed in the spectra are fairly well-resolved, allowing a detailed view of the changes in relative intensities of individual transitions with photon energy. With supporting calculations on the numerous close-lying electronic states, we suggest a description of strong photoelectron-valence electron interactions that result in the photon-energy dependent shake-up transitions and switching between ferro- and antiferromagnetic coupling. </p>
0

Good Vibrations: Calculating Excited State Frequencies Using Ground State Self-Consistent Field Models

Ali Abou Taka et al.Jun 27, 2022
△SCF methods have proven to be reliable computational tools for the assignment and interpretation of photoelectron spectra of isolated molecules. These results have increased the interest in △SCF techniques for electronic excited states based on improved algorithms that prevent convergence to ground states. In this work, one of these △SCF improved algorithms is studied to demonstrate its ability to explore the molecular properties for excited states. Results from △SCF calculations for a set of representative molecules are compared with results obtained using time-dependent density functional theory and single substitution configuration interaction method. For the △SCF calculations, the efficacy of a spin-purification technique is explored to remedy some of the spin-contamination presented in some of the SCF solutions. The obtained results suggest that the proposed projection-based SCF scheme, in many cases, alleviates the spin--contamination present in the SCF single determinants, and provides a computational alternative for the efficient exploration of the vibrational properties of excited states molecules.
0

Good Vibrations: Calculating Excited State Frequencies Using Ground State Self-Consistent Field Models

Ali Abou Taka et al.Nov 25, 2021
△SCF methods have proven to be reliable computational tools for the assignment and interpretation of photoelectron spectra of isolated molecules. These results have increased the interest in △SCF techniques for electronic excited states based on improved algorithms that prevent convergence to ground states. In this work, one of these △SCF improved algorithms is studied to demonstrate its ability to explore the molecular properties for excited states. Results from △SCF calculations for a set of representative molecules are compared with results obtained using time-dependent density functional theory and single substitution configuration interaction method. For the △SCF calculations, the efficacy of a spin-purification technique is explored to remedy some of the spin-contamination presented in some of the SCF solutions. The obtained results suggest that the proposed projection-based SCF scheme, in many cases, alleviates the spin--contamination present in the SCF single determinants, and provides a computational alternative for the efficient exploration of the vibrational properties of excited states molecules.
Load More