SS
Saurabh Singh
Author with expertise in Blockchain and Internet of Things Integration
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(45% Open Access)
Cited by:
3,545
h-index:
31
/
i10-index:
47
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

What makes Paris look like Paris?

Carl Doersch et al.Jul 1, 2012
Given a large repository of geotagged imagery, we seek to automatically find visual elements, e. g. windows, balconies, and street signs, that are most distinctive for a certain geo-spatial area, for example the city of Paris. This is a tremendously difficult task as the visual features distinguishing architectural elements of different places can be very subtle. In addition, we face a hard search problem: given all possible patches in all images, which of them are both frequently occurring and geographically informative? To address these issues, we propose to use a discriminative clustering approach able to take into account the weak geographic supervision. We show that geographically representative image elements can be discovered automatically from Google Street View imagery in a discriminative manner. We demonstrate that these elements are visually interpretable and perceptually geo-informative. The discovered visual elements can also support a variety of computational geography tasks, such as mapping architectural correspondences and influences within and across cities, finding representative elements at different geo-spatial scales, and geographically-informed image retrieval.
0

Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city

Saurabh Singh et al.Jul 1, 2020
In the digital era, the smart city can become an intelligent society by utilizing advances in emerging technologies. Specifically, the rapid adoption of blockchain technology has led a paradigm shift to a new digital smart city ecosystem. A broad spectrum of blockchain applications promise solutions for problems in areas ranging from risk management and financial services to cryptocurrency, and from the Internet of Things (IoT) to public and social services. Furthermore, the convergence of Artificial Intelligence (AI) and blockchain technology is revolutionizing the smart city network architecture to build sustainable ecosystems. However, these advancements in technologies bring both opportunities and challenges when it comes to achieving the goals of creating a sustainable smart cities. This paper provides a comprehensive literature review of the security issues and problems that impact the deployment of blockchain systems in smart cities. This work presents a detailed discussion of several key factors for the convergence of Blockchain and AI technologies that will help form a sustainable smart society. We discuss blockchain security enhancement solutions, summarizing the key points that can be used for developing various blockchain-AI based intelligent transportation systems. Also, we discuss the issues that remain open and our future research direction, this includes new security suggestions and future guidelines for a sustainable smart city ecosystem.
0

A Novel PCA-Firefly Based XGBoost Classification Model for Intrusion Detection in Networks Using GPU

Sweta Bhattacharya et al.Jan 27, 2020
The enormous popularity of the internet across all spheres of human life has introduced various risks of malicious attacks in the network. The activities performed over the network could be effortlessly proliferated, which has led to the emergence of intrusion detection systems. The patterns of the attacks are also dynamic, which necessitates efficient classification and prediction of cyber attacks. In this paper we propose a hybrid principal component analysis (PCA)-firefly based machine learning model to classify intrusion detection system (IDS) datasets. The dataset used in the study is collected from Kaggle. The model first performs One-Hot encoding for the transformation of the IDS datasets. The hybrid PCA-firefly algorithm is then used for dimensionality reduction. The XGBoost algorithm is implemented on the reduced dataset for classification. A comprehensive evaluation of the model is conducted with the state of the art machine learning approaches to justify the superiority of our proposed approach. The experimental results confirm the fact that the proposed model performs better than the existing machine learning models.
0

Early Detection of Diabetic Retinopathy Using PCA-Firefly Based Deep Learning Model

Thippa Gadekallu et al.Feb 5, 2020
Diabetic Retinopathy is a major cause of vision loss and blindness affecting millions of people across the globe. Although there are established screening methods - fluorescein angiography and optical coherence tomography for detection of the disease but in majority of the cases, the patients remain ignorant and fail to undertake such tests at an appropriate time. The early detection of the disease plays an extremely important role in preventing vision loss which is the consequence of diabetes mellitus remaining untreated among patients for a prolonged time period. Various machine learning and deep learning approaches have been implemented on diabetic retinopathy dataset for classification and prediction of the disease but majority of them have neglected the aspect of data pre-processing and dimensionality reduction, leading to biased results. The dataset used in the present study is a diabetes retinopathy dataset collected from the UCI machine learning repository. At its inceptions, the raw dataset is normalized using the Standardscalar technique and then Principal Component Analysis (PCA) is used to extract the most significant features in the dataset. Further, Firefly algorithm is implemented for dimensionality reduction. This reduced dataset is fed into a Deep Neural Network Model for classification. The results generated from the model is evaluated against the prevalent machine learning models and the results justify the superiority of the proposed model in terms of Accuracy, Precision, Recall, Sensitivity and Specificity.
0

Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN)

Savita Ahlawat et al.Jun 12, 2020
Traditional systems of handwriting recognition have relied on handcrafted features and a large amount of prior knowledge. Training an Optical character recognition (OCR) system based on these prerequisites is a challenging task. Research in the handwriting recognition field is focused around deep learning techniques and has achieved breakthrough performance in the last few years. Still, the rapid growth in the amount of handwritten data and the availability of massive processing power demands improvement in recognition accuracy and deserves further investigation. Convolutional neural networks (CNNs) are very effective in perceiving the structure of handwritten characters/words in ways that help in automatic extraction of distinct features and make CNN the most suitable approach for solving handwriting recognition problems. Our aim in the proposed work is to explore the various design options like number of layers, stride size, receptive field, kernel size, padding and dilution for CNN-based handwritten digit recognition. In addition, we aim to evaluate various SGD optimization algorithms in improving the performance of handwritten digit recognition. A network's recognition accuracy increases by incorporating ensemble architecture. Here, our objective is to achieve comparable accuracy by using a pure CNN architecture without ensemble architecture, as ensemble architectures introduce increased computational cost and high testing complexity. Thus, a CNN architecture is proposed in order to achieve accuracy even better than that of ensemble architectures, along with reduced operational complexity and cost. Moreover, we also present an appropriate combination of learning parameters in designing a CNN that leads us to reach a new absolute record in classifying MNIST handwritten digits. We carried out extensive experiments and achieved a recognition accuracy of 99.87% for a MNIST dataset.
Load More