DS
Dwight Sanderfer
Author with expertise in Stellar Astrophysics and Exoplanet Studies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
2,397
h-index:
23
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

PLANETARY CANDIDATES OBSERVED BY KEPLER . III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA

Natalie Batalha et al.Feb 5, 2013
New transiting planet candidates are identified in 16 months (2009 May-2010 September) of data from the Kepler spacecraft.Nearly 5000 periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1108 viable new planet candidates, bringing the total count up to over 2300.Improved vetting metrics are employed, contributing to higher catalog reliability.Most notable is the noise-weighted robust averaging of multiquarter photo-center offsets derived from difference image analysis that identifies likely background eclipsing binaries.Twenty-two months of photometry are used for the purpose of characterizing each of the candidates.Ephemerides (transit epoch, T 0 , and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R P /R ), reduced semimajor axis (d/R ), and impact parameter (b).The largest fractional increases are seen for the smallest planet candidates (201% for candidates smaller than 2 R ⊕ compared to 53% for candidates larger than 2 R ⊕ ) and those at longer orbital periods (124% for candidates outside of 50 day orbits versus 86% for candidates inside of 50 day orbits).The gains are larger than expected from increasing the observing window from 13 months (Quarters 1-5) to 16 months (Quarters 1-6) even in regions of parameter space where one would have expected the previous catalogs to be complete.Analyses of planet frequencies based on previous catalogs will be affected by such incompleteness.The fraction of all planet candidate host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident.The progression
0

KEPLERECLIPSING BINARY STARS. II. 2165 ECLIPSING BINARIES IN THE SECOND DATA RELEASE

Robert Slawson et al.Oct 12, 2011
The Kepler Mission provides nearly continuous monitoring of ~156 000 objects with unprecedented photometric precision. Coincident with the first data release, we presented a catalog of 1879 eclipsing binary systems identified within the 115 square degree Kepler FOV. Here, we provide an updated catalog augmented with the second Kepler data release which increases the baseline nearly 4-fold to 125 days. 386 new systems have been added, ephemerides and principle parameters have been recomputed. We have removed 42 previously cataloged systems that are now clearly recognized as short-period pulsating variables and another 58 blended systems where we have determined that the Kepler target object is not itself the eclipsing binary. A number of interesting objects are identified. We present several exemplary cases: 4 EBs that exhibit extra (tertiary) eclipse events; and 8 systems that show clear eclipse timing variations indicative of the presence of additional bodies bound in the system. We have updated the period and galactic latitude distribution diagrams. With these changes, the total number of identified eclipsing binary systems in the Kepler field-of-view has increased to 2165, 1.4% of the Kepler target stars.
0

TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USINGKEPLERDATA

Daniel Huber et al.Dec 1, 2011
We have analyzed solar-like oscillations in ~1700 stars observed by the Kepler Mission, spanning from the main-sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power (nu_max), the large frequency separation (Delta_nu) and oscillation amplitudes. We show that the difference of the Delta_nu-nu_max relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M)^s scaling nor the revised scaling relation by Kjeldsen & Bedding (2011) are accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main-sequence to red-giants to a precision of ~25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.
0
Citation328
0
Save
0

KeplerData Validation I—Architecture, Diagnostic Tests, and Data Products for Vetting Transiting Planet Candidates

Joseph Twicken et al.Apr 24, 2018
The Kepler Mission was designed to identify and characterize transiting planets in the Kepler Field of View and to determine their occurrence rates. Emphasis was placed on identification of Earth-size planets orbiting in the Habitable Zone of their host stars. Science data were acquired for a period of four years. Long-cadence data with 29.4 min sampling were obtained for ~200,000 individual stellar targets in at least one observing quarter in the primary Kepler Mission. Light curves for target stars are extracted in the Kepler Science Data Processing Pipeline, and are searched for transiting planet signatures. A Threshold Crossing Event is generated in the transit search for targets where the transit detection threshold is exceeded and transit consistency checks are satisfied. These targets are subjected to further scrutiny in the Data Validation (DV) component of the Pipeline. Transiting planet candidates are characterized in DV, and light curves are searched for additional planets after transit signatures are modeled and removed. A suite of diagnostic tests is performed on all candidates to aid in discrimination between genuine transiting planets and instrumental or astrophysical false positives. Data products are generated per target and planet candidate to document and display transiting planet model fit and diagnostic test results. These products are exported to the Exoplanet Archive at the NASA Exoplanet Science Institute, and are available to the community. We describe the DV architecture and diagnostic tests, and provide a brief overview of the data products. Transiting planet modeling and the search for multiple planets on individual targets are described in a companion paper. The final revision of the Kepler Pipeline code base is available to the general public through GitHub. The Kepler Pipeline has also been modified to support the TESS Mission which will commence in 2018.
0
Paper
Citation261
0
Save
0

Accurate fundamental parameters and detailed abundance patterns from spectroscopy of 93 solar-type Kepler targets★†

H. Bruntt et al.May 11, 2012
We present a detailed spectroscopic study of 93 solar-type stars that are targets of the NASA/Kepler mission and provide detailed chemical composition of each target. We find that the overall metallicity is well-represented by Fe lines. Relative abundances of light elements (CNO) and alpha-elements are generally higher for low-metallicity stars. Our spectroscopic analysis benefits from the accurately measured surface gravity from the asteroseismic analysis of the Kepler light curves. The log g parameter is known to better than 0.03 dex and is held fixed in the analysis. We compare our Teff determination with a recent colour calibration of V-K (TYCHO V magnitude minus 2MASS Ks magnitude) and find very good agreement and a scatter of only 80 K, showing that for other nearby Kepler targets this index can be used. The asteroseismic log g values agree very well with the classical determination using Fe1-Fe2 balance, although we find a small systematic offset of 0.08 dex (asteroseismic log g values are lower). The abundance patterns of metals, alpha elements, and the light elements (CNO) show that a simple scaling by [Fe/H] is adequate to represent the metallicity of the stars, except for the stars with metallicity below -0.3, where alpha-enhancement becomes important. However, this is only important for a very small fraction of the Kepler sample. We therefore recommend that a simple scaling with [Fe/H] be employed in the asteroseismic analyses of large ensembles of solar-type stars.