DN
Daria Nurzyńska
Author with expertise in Tissue Engineering and Regenerative Medicine
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
2,733
h-index:
28
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure

Konrad Urbanek et al.Jun 2, 2005
In this study, we tested whether the human heart possesses a cardiac stem cell (CSC) pool that promotes regeneration after infarction. For this purpose, CSC growth and senescence were measured in 20 hearts with acute infarcts, 20 hearts with end-stage postinfarction cardiomyopathy, and 12 control hearts. CSC number increased markedly in acute and, to a lesser extent, in chronic infarcts. CSC growth correlated with the increase in telomerase-competent dividing CSCs from 1.5% in controls to 28% in acute infarcts and 14% in chronic infarcts. The CSC mitotic index increased 29-fold in acute and 14-fold in chronic infarcts. CSCs committed to the myocyte, smooth muscle, and endothelial cell lineages increased ≈85-fold in acute infarcts and ≈25-fold in chronic infarcts. However, p16 INK4a -p53-positive senescent CSCs also increased and were 10%, 18%, and 40% in controls, acute infarcts, and chronic infarcts, respectively. Old CSCs had short telomeres and apoptosis involved 0.3%, 3.8%, and 9.6% of CSCs in controls, acute infarcts, and chronic infarcts, respectively. These variables reduced the number of functionally competent CSCs from ≈26,000/cm 3 of viable myocardium in acute to ≈7,000/cm 3 in chronic infarcts, respectively. In seven acute infarcts, foci of spontaneous myocardial regeneration that did not involve cell fusion were identified. In conclusion, the human heart possesses a CSC compartment, and CSC activation occurs in response to ischemic injury. The loss of functionally competent CSCs in chronic ischemic cardiomyopathy may underlie the progressive functional deterioration and the onset of terminal failure.
0
Citation628
0
Save
0

Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function

Axel Linke et al.Jun 10, 2005
The purpose of this study was to determine whether the heart in large mammals contains cardiac progenitor cells that regulate organ homeostasis and regenerate dead myocardium after infarction. We report that the dog heart possesses a cardiac stem cell pool characterized by undifferentiated cells that are self-renewing, clonogenic, and multipotent. These clonogenic cells and early committed progeny possess a hepatocyte growth factor (HGF)–c-Met and an insulin-like growth factor 1 (IGF-1)-IGF-1 receptor system that can be activated to induce their migration, proliferation, and survival. Therefore, myocardial infarction was induced in chronically instrumented dogs implanted with sonomicrometric crystals in the region of the left ventricular wall supplied by the occluded left anterior descending coronary artery. After infarction, HGF and IGF-1 were injected intramyocardially to stimulate resident cardiac progenitor cells. This intervention led to the formation of myocytes and coronary vessels within the infarct. Newly generated myocytes expressed nuclear and cytoplasmic proteins specific of cardiomyocytes: MEF2C was detected in the nucleus, whereas α-sarcomeric actin, cardiac myosin heavy chain, troponin I, and α-actinin were identified in the cytoplasm. Connexin 43 and N-cadherin were also present. Myocardial reconstitution resulted in a marked recovery of contractile performance of the infarcted heart. In conclusion, the activation of resident primitive cells in the damaged dog heart can promote a significant restoration of dead tissue, which is paralleled by a progressive improvement in cardiac function. These results suggest that strategies capable of activating the growth reserve of the myocardium may be important in cardiac repair after ischemic injury.
0

Cardiac Stem Cell and Myocyte Aging, Heart Failure, and Insulin-Like Growth Factor-1 Overexpression

Daniele Torella et al.Jan 20, 2004
To determine whether cellular aging leads to a cardiomyopathy and heart failure, markers of cellular senescence, cell death, telomerase activity, telomere integrity, and cell regeneration were measured in myocytes of aging wild-type mice (WT). These parameters were similarly studied in insulin-like growth factor-1 (IGF-1) transgenic mice (TG) because IGF-1 promotes cell growth and survival and may delay cellular aging. Importantly, the consequences of aging on cardiac stem cell (CSC) growth and senescence were evaluated. Gene products implicated in growth arrest and senescence, such as p27Kip1, p53, p16INK4a, and p19ARF, were detected in myocytes of young WT mice, and their expression increased with age. IGF-1 attenuated the levels of these proteins at all ages. Telomerase activity decreased in aging WT myocytes but increased in TG, paralleling the changes in Akt phosphorylation. Reduction in nuclear phospho-Akt and telomerase resulted in telomere shortening and uncapping in WT myocytes. Senescence and death of CSCs increased with age in WT impairing the growth and turnover of cells in the heart. DNA damage and myocyte death exceeded cell formation in old WT, leading to a decreased number of myocytes and heart failure. This did not occur in TG in which CSC-mediated myocyte regeneration compensated for the extent of cell death preventing ventricular dysfunction. IGF-1 enhanced nuclear phospho-Akt and telomerase delaying cellular aging and death. The differential response of TG mice to chronological age may result from preservation of functional CSCs undergoing myocyte commitment. In conclusion, senescence of CSCs and myocytes conditions the development of an aging myopathy.
0

Cardiac Stem Cells Possess Growth Factor-Receptor Systems That After Activation Regenerate the Infarcted Myocardium, Improving Ventricular Function and Long-Term Survival

Konrad Urbanek et al.Sep 3, 2005
Cardiac stem cells and early committed cells (CSCs-ECCs) express c-Met and insulin-like growth factor-1 (IGF-1) receptors and synthesize and secrete the corresponding ligands, hepatocyte growth factor (HGF) and IGF-1. HGF mobilizes CSCs-ECCs and IGF-1 promotes their survival and proliferation. Therefore, HGF and IGF-1 were injected in the hearts of infarcted mice to favor, respectively, the translocation of CSCs-ECCs from the surrounding myocardium to the dead tissue and the viability and growth of these cells within the damaged area. To facilitate migration and homing of CSCs-ECCs to the infarct, a growth factor gradient was introduced between the site of storage of primitive cells in the atria and the region bordering the infarct. The newly-formed myocardium contained arterioles, capillaries, and functionally competent myocytes that with time increased in size, improving ventricular performance at healing and long thereafter. The volume of regenerated myocytes was 2200 microm3 at 16 days after treatment and reached 5100 microm3 at 4 months. In this interval, nearly 20% of myocytes reached the adult phenotype, varying in size from 10,000 to 20,000 microm3. Moreover, there were 43+/-13 arterioles and 155+/-48 capillaries/mm2 myocardium at 16 days, and 31+/-6 arterioles and 390+/-56 capillaries at 4 months. Myocardial regeneration induced increased survival and rescued animals with infarcts that were up to 86% of the ventricle, which are commonly fatal. In conclusion, the heart has an endogenous reserve of CSCs-ECCs that can be activated to reconstitute dead myocardium and recover cardiac function.
0
Citation517
0
Save
0

Bone Marrow Cells Differentiate in Cardiac Cell Lineages After Infarction Independently of Cell Fusion

Jan Kajstura et al.Nov 30, 2004
Recent studies in mice have challenged the ability of bone marrow cells (BMCs) to differentiate into myocytes and coronary vessels. The claim has also been made that BMCs acquire a cell phenotype different from the blood lineages only by fusing with resident cells. Technical problems exist in the induction of myocardial infarction and the successful injection of BMCs in the mouse heart. Similarly, the accurate analysis of the cell populations implicated in the regeneration of the dead tissue is complex and these factors together may account for the negative findings. In this study, we have implemented a simple protocol that can easily be reproduced and have reevaluated whether injection of BMCs restores the infarcted myocardium in mice and whether cell fusion is involved in tissue reconstitution. For this purpose, c-kit–positive BMCs were obtained from male transgenic mice expressing enhanced green fluorescence protein (EGFP). EGFP and the Y-chromosome were used as markers of the progeny of the transplanted cells in the recipient heart. By this approach, we have demonstrated that BMCs, when properly administrated in the infarcted heart, efficiently differentiate into myocytes and coronary vessels with no detectable differentiation into hemopoietic lineages. However, BMCs have no apparent paracrine effect on the growth behavior of the surviving myocardium. Within the infarct, in 10 days, nearly 4.5 million biochemically and morphologically differentiated myocytes together with coronary arterioles and capillary structures were generated independently of cell fusion. In conclusion, BMCs adopt the cardiac cell lineages and have an important therapeutic impact on ischemic heart failure.
0
Citation481
0
Save