There are various types of initial defects in weld joints of orthotropic steel deck, which significantly impact the fatigue crack growth behavior of the welds. The traditional single-crack growth model is not appropriate to be utilized for the fatigue investigation of welds containing multiple defects. This study analyzed the dynamic evolution behavior of crack-inclusion interactions in the weld toe of rib-to-deck joints based on the fracture mechanics theory. The influence of defect-related parameters on crack fatigue life was discussed. Numerical simulations and fatigue test were conducted to investigate the dynamic interaction behavior of the crack-inclusion under fatigue loading. A merging criterion for multiple inclusions was proposed to simply the fatigue life analysis of coupled cracks. The numerical results show that the stiff inclusion has a shielding effect on the crack growth. The effect is affected by the relative depth of the crack and inclusion (a0/R), the interaction spacing of defects (S), and the burial depth of the inclusion (h). The shielding effect becomes negligible under the condition a0/R≥3. The fatigue life of the interactive crack increases by up to 23 % compared to single crack. Fully buried inclusions have a limited impact on crack growth. The fatigue life of the interactive crack shows a non-monotonic increase with the quantities of inclusions, with double inclusion clusters. It is demonstrated that the highest shielding effect will increase the fatigue life by 26 %. The proposed merging criterion simplifies the prediction of the fatigue life for welded joint containing multiple inclusions. The numerical result provides a referencing database for fatigue life evaluation of steel structures with multiple welding defects.