Image plates (IPs), or phosphor storage screens, are a technology employed frequently in inertial confinement fusion (ICF) and high energy density plasma (HEDP) diagnostics because of their sensitivity to many types of radiation, including, x rays, protons, alphas, beta particles, and neutrons. Prior studies characterizing IPs are predicated on the signal level remaining below the scanner saturation threshold. Since the scanning process removes some signal from the IP via photostimulated luminescence, repeatedly scanning an IP can bring the signal level below the scanner saturation threshold. This process, in turn, raises concerns about the signal response of IPs after an arbitrary number of scans and whether such a process yields, for example, a constant ratio of signal between the nth and n + 1st scan. Here, the sensitivity of IPs is investigated when scanned multiple times. It is demonstrated that the ratio of signal decay is not a constant with the number of scans and that the signal decay depends on the x-ray energy. As such, repeatedly scanning an IP with a mixture of signal types (e.g., x ray, neutron, and protons) enables ICF and HEDP diagnostics employing IPs to better isolate a particular signal type.