SY
Shengming Yin
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(25% Open Access)
Cited by:
2,739
h-index:
25
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Unique PCoN Surface Bonding States Constructed on g‐C3N4 Nanosheets for Drastically Enhanced Photocatalytic Activity of H2 Evolution

Chunmei Li et al.Dec 14, 2016
Developing high‐efficiency and low‐cost photocatalysts by avoiding expensive noble metals, yet remarkably improving H 2 evolution performance, is a great challenge. Noble‐metal‐free catalysts containing Co(Fe)NC moieties have been widely reported in recent years for electrochemical oxygen reduction reaction and have also gained noticeable interest for organic transformation. However, to date, no prior studies are available in the literature about the activity of N‐coordinated metal centers for photocatalytic H 2 evolution. Herein, a new photocatalyst containing g‐C 3 N 4 decorated with CoP nanodots constructed from low‐cost precursors is reported. It is for the first time revealed that the unique P(δ − )Co(δ + )N(δ − ) surface bonding states lead to much superior H 2 evolution activity (96.2 µmol h −1 ) compared to noble metal (Pt)‐decorated g‐C 3 N 4 photocatalyst (32.3 µmol h −1 ). The quantum efficiency of 12.4% at 420 nm is also much higher than the record values (≈2%) of other transition metal cocatalysts‐loaded g‐C 3 N 4 . It is believed that this work marks an important step toward developing high‐performance and low‐cost photocatalytic materials for H 2 evolution.
0

Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H2 Evolution and CO2 Reduction

Wenguang Tu et al.Jul 5, 2017
Vacancy engineering, that is, self-doping of vacancy in semiconductors, has become a commonly used strategy to tune the photocatalytic performances. However, there still lacks fundamental understanding of the role of the vacancies in semiconductor materials. Herein, the g-C3N4 nanosheets with tunable nitrogen vacancies are prepared as the photocatalysts for H2 evolution and CO2 reduction to CO. On the basis of both experimental investigation and DFT calculations, nitrogen vacancies in g-C3N4 induce the formation of midgap states under the conduction band edge. The position of midgap states becomes deeper with the increasing of nitrogen vacancies. The g-C3N4 nanosheets with the optimized density of nitrogen vacancies display about 18 times and 4 times enhancement for H2 evolution and of CO2 reduction to CO, respectively, as compared to the bulk g-C3N4. This is attributed to the synergistic effects of several factors including (1) nitrogen vacancies cause the excitation of electrons to midgap states below the conduction band edge, which results in extension of the visible light absorption to photons of longer wavelengths (up to 598 nm); (2) the suitable midgap states could trap photogenerated electrons to minimize the recombination loss of photogenerated electron–hole pairs; and (3) nitrogen vacancies lead to uniformly anchored small Pt nanoparticles (1–2 nm) on g-C3N4, and facilitate the electron transfer to Pt. However, the overintroduction of nitrogen vacancies generates deeper midgap states as the recombination centers, which results in deterioration of photocatalytic activities. Our work is expected to provide new insights for fabrication of nanomaterials with suitable vacancies for solar fuel generation.