AN
Arsha Nagrani
Author with expertise in Visual Question Answering in Images and Videos
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
2,108
h-index:
29
/
i10-index:
49
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Voxceleb: Large-scale speaker verification in the wild

Arsha Nagrani et al.Oct 16, 2019
The objective of this work is speaker recognition under noisy and unconstrained conditions. We make two key contributions. First, we introduce a very large-scale audio-visual dataset collected from open source media using a fully automated pipeline. Most existing datasets for speaker identification contain samples obtained under quite constrained conditions, and usually require manual annotations, hence are limited in size. We propose a pipeline based on computer vision techniques to create the dataset from open-source media. Our pipeline involves obtaining videos from YouTube; performing active speaker verification using a two-stream synchronization Convolutional Neural Network (CNN), and confirming the identity of the speaker using CNN based facial recognition. We use this pipeline to curate VoxCeleb which contains contains over a million ‘real-world’ utterances from over 6000 speakers. This is several times larger than any publicly available speaker recognition dataset. Second, we develop and compare different CNN architectures with various aggregation methods and training loss functions that can effectively recognise identities from voice under various conditions. The models trained on our dataset surpass the performance of previous works by a significant margin.
0

Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval

Max Bain et al.Oct 1, 2021
Our objective in this work is video-text retrieval – in particular a joint embedding that enables efficient text-to-video retrieval. The challenges in this area include the design of the visual architecture and the nature of the training data, in that the available large scale video-text training datasets, such as HowTo100M, are noisy and hence competitive performance is achieved only at scale through large amounts of compute.We address both these challenges in this paper. We propose an end-to-end trainable model that is designed to take advantage of both large-scale image and video captioning datasets. Our model is an adaptation and extension of the recent ViT and Timesformer architectures, and consists of attention in both space and time. The model is flexible and can be trained on both image and video text datasets, either independently or in conjunction. It is trained with a curriculum learning schedule that begins by treating images as ‘frozen’ snapshots of video, and then gradually learns to attend to increasing temporal context when trained on video datasets. We also provide a new video-text pretraining dataset WebVid-2M, comprised of over two million videos with weak captions scraped from the internet. Despite training on datasets that are an order of magnitude smaller, we show that this approach yields state-of-the-art results on standard downstream video-retrieval benchmarks including MSR-VTT, MSVD, DiDeMo and LSMDC.
0

Seeing Voices and Hearing Faces: Cross-Modal Biometric Matching

Arsha Nagrani et al.Jun 1, 2018
We introduce a seemingly impossible task: given only an audio clip of someone speaking, decide which of two face images is the speaker. In this paper we study this, and a number of related cross-modal tasks, aimed at answering the question: how much can we infer from the voice about the face and vice versa? We study this task "in the wild", employing the datasets that are now publicly available for face recognition from static images (VGGFace) and speaker identification from audio (VoxCeleb). These provide training and testing scenarios for both static and dynamic testing of cross-modal matching. We make the following contributions: (i) we introduce CNN architectures for both binary and multi-way cross-modal face and audio matching: (ii) we compare dynamic testing (where video information is available, but the audio is not from the same video) with static testing (where only a single still image is available): and (iii) we use human testing as a baseline to calibrate the difficulty of the task. We show that a CNN can indeed be trained to solve this task in both the static and dynamic scenarios, and is even well above chance on 10-way classification of the face given the voice. The CNN matches human performance on easy examples (e.g. different gender across faces) but exceeds human performance on more challenging examples (e.g. faces with the same gender, age and nationality).