JL
Joshua Laughner
Author with expertise in Health Effects of Air Pollution
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
655
h-index:
21
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Why do models overestimate surface ozone in the Southeast United States?

Katherine Travis et al.Nov 1, 2016
Abstract. Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx ≡ NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25° × 0.3125° horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30–60 %, dependent on the assumption of the contribution by soil NOx emissions. Upper-tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft and reproduces the observed ozone production efficiency in the boundary layer as derived from a regression of ozone and NOx oxidation products. However, the model is still biased high by 6 ± 14 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer.
0
Paper
Citation422
0
Save
0

Methane retrieval from MethaneAIR using the CO2 proxy approach: a demonstration for the upcoming MethaneSAT mission

Christopher Miller et al.Sep 16, 2024
Abstract. Reducing methane (CH4) emissions from the oil and gas (O&amp;G) sector is crucial for mitigating climate change in the near term. MethaneSAT is an upcoming satellite mission designed to monitor basin-wide O&amp;G emissions globally, providing estimates of emission rates and helping identify the underlying processes leading to methane release in the atmosphere. MethaneSAT data will support advocacy and policy efforts by helping to track methane reduction commitments and targets set by countries and industries. Here, we introduce a CH4 retrieval algorithm for MethaneSAT based on the CO2 proxy method. We apply the algorithm to observations from the maiden campaign of MethaneAIR, an airborne precursor to the satellite that has similar instrument specifications. The campaign was conducted during winter 2019 and summer 2021 over three major US oil and gas basins. Analysis of MethaneAIR data shows that measurement precision is typically better than 2 % at a 20×20 m2 pixel resolution, exhibiting no strong dependence on geophysical variables, e.g., surface reflectance. We show that detector focus drifts over the course of each flight, likely due to thermal gradients that develop across the optical bench. The impacts of this drift on retrieved CH4 can mostly be mitigated by including a parameter that squeezes the laboratory-derived, tabulated instrument spectral response function (ISRF) in the spectral fit. Validation against coincident EM27/SUN retrievals shows that MethaneAIR values are generally within 1 % of the retrievals. MethaneAIR retrievals were also intercompared with retrievals from the TROPOspheric Monitoring Instrument (TROPOMI). We estimate that the mean bias between the instruments is 2.5 ppb, and the latitudinal gradients for the two data sets are in good agreement. We evaluate the accuracy of MethaneAIR estimates of point-source emissions using observations recorded over the Permian Basin, an O&amp;G basin, based on the integrated-mass-enhancement approach coupled with a plume-masking algorithm that uses total variational denoising. We estimate that the median point-source detection threshold is 100–150 kg h−1 at the aircraft's nominal above-surface observation altitude of 12 km. This estimate is based on an ensemble of Weather Research and Forecasting (WRF) large-eddy simulations used to mimic the campaign's conditions, with the threshold for quantification set at approximately twice the detection threshold. Retrievals from repeated basin surveys indicate the presence of both persistent and intermittent sources, and we highlight an example from each case. For the persistent source, we infer emissions from a large O&amp;G processing facility and estimate a leak rate between 1.6 % and 2.1 %, higher than any previously reported emission levels from a facility of its size. We also identify a ruptured pipeline that could increase total basin emissions by 2 % if left unrepaired; this pipeline was discovered 2 weeks before it was found by its operator, highlighting the importance of regular monitoring by future satellite missions. The results showcase MethaneAIR's capability to make highly accurate, precise measurements of methane dry-air mole fractions in the atmosphere, with a fine spatial resolution (∼ 20×20 m2) mapped over large swaths (∼ 100×100 km2) in a single flight. The results provide confidence that MethaneSAT can make such measurements at unprecedentedly fine scales from space (∼ 130×400 m2 pixel size over a target area measuring ∼ 200×200 km2), thereby delivering quantitative data on basin-wide methane emissions.
0
Paper
Citation1
0
Save