ZS
Zhi Sun
Author with expertise in Global E-Waste Recycling and Management
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(9% Open Access)
Cited by:
2,320
h-index:
49
/
i10-index:
130
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process

Wenfang Gao et al.Jan 12, 2017
A closed-loop process to recover lithium carbonate from cathode scrap of lithium-ion battery (LIB) is developed. Lithium could be selectively leached into solution using formic acid while aluminum remained as the metallic form, and most of the other metals from the cathode scrap could be precipitated out. This phenomenon clearly demonstrates that formic acid can be used for lithium recovery from cathode scrap, as both leaching and separation reagent. By investigating the effects of different parameters including temperature, formic acid concentration, H2O2 amount, and solid to liquid ratio, the leaching rate of Li can reach 99.93% with minor Al loss into the solution. Subsequently, the leaching kinetics was evaluated and the controlling step as well as the apparent activation energy could be determined. After further separation of the remaining Ni, Co, and Mn from the leachate, Li2CO3 with the purity of 99.90% could be obtained. The final solution after lithium carbonate extraction can be further processed for sodium formate preparation, and Ni, Co, and Mn precipitates are ready for precursor preparation for cathode materials. As a result, the global recovery rates of Al, Li, Ni, Co, and Mn in this process were found to be 95.46%, 98.22%, 99.96%, 99.96%, and 99.95% respectively, achieving effective resources recycling from cathode scrap of spent LIB.
0

Spent lithium-ion battery recycling – Reductive ammonia leaching of metals from cathode scrap by sodium sulphite

Xiaohong Zheng et al.Dec 18, 2016
Recycling of spent lithium-ion batteries has attracted wide attention because of their high content of valuable and hazardous metals. One of the difficulties for effective metal recovery is the separation of different metals from the solution after leaching. In this research, a full hydrometallurgical process is developed to selectively recover valuable metals (Ni, Co and Li) from cathode scrap of spent lithium ion batteries. By introducing ammonia-ammonium sulphate as the leaching solution and sodium sulphite as the reductant, the total selectivity of Ni, Co and Li in the first-step leaching solution is more than 98.6% while it for Mn is only 1.36%. In detail understanding of the selective leaching process is carried out by investigating the effects of parameters such as leaching reagent composition, leaching time (0-480min), agitation speed (200-700rpm), pulp density (10-50g/L) and temperature (323-353K). It was found that Mn is primarily reduced from Mn4+ into Mn2+ into the solution as [Formula: see text] while it subsequently precipitates out into the residue in the form of (NH4)2Mn(SO3)2·H2O. Ni, Co and Li are leached and remain in the solution either as metallic ion or amine complexes. The optimised leaching conditions can be further obtained and the leaching kinetics is found to be chemical reaction control under current leaching conditions. As a result, this research is potentially beneficial for further optimisation of the spent lithium ion battery recycling process after incorporating with metal extraction from the leaching solution.
0

A Closed-Loop Process for Selective Metal Recovery from Spent Lithium Iron Phosphate Batteries through Mechanochemical Activation

Yongxia Yang et al.Sep 29, 2017
With the increasing consumption of lithium ion batteries (LIBs) in electric and electronic products, the recycling of spent LIBs has drawn significant attention due to their high potential of environmental impacts and waste of valuable resources. Among different types of spent LIBs, the difficulties for recycling spent LiFePO4 batteries rest on their relatively low extraction efficiency and recycling selectivity in which secondary waste is frequently generated. In this research, mechanochemical activation was developed to selectively recycle Fe and Li from cathode scrap of spent LiFePO4 batteries. By mechanochemical activation pretreatment and the diluted H3PO4 leaching solution, the leaching efficiency of Fe and Li can be significantly improved to be 97.67% and 94.29%, respectively. To understand the Fe and Li extraction process and the mechanochemical activation mechanisms, the effects of various parameters during Fe and Li recovery were comprehensively investigated, including activation time, cathode powder to additive mass ratio, acid concentration, the liquid-to-solid ratio, and leaching time. Subsequently, the metal ions after leaching can be recovered by selective precipitation. In the whole process, about 93.05% Fe and 82.55% Li could be recovered as FePO4·2H2O and Li3PO4, achieving selective recycling of metals for efficient use of resources from spent lithium ion batteries.
0

Toward Sustainability for Recovery of Critical Metals from Electronic Waste: The Hydrochemistry Processes

Zhi Sun et al.Sep 14, 2016
Critical metals are significantly important in the preparation of high-tech materials associated with applications on, e.g., renewable energy, sustainable materials engineering and cleaner production. This importance together with supply risk to a substantial extent within the European Union (EU) has pushed their recovery from waste being highlighted. Electronic waste, usually from end-of-life electronic products, is a notable secondary resource for this purpose because of its distinctive features. A range of critical metals, including rare-earth metals, indium, cobalt and valuable metals, such as copper, silver and gold, are possibly recovered from electronic waste. On top of the current practices of electronic waste recycling, it requires innovations on technology and breakthroughs on process design in order to promote critical metal recovery or electronic waste treatment (in general) to be green and sustainable. Significant potentials are more and more noticed from hydrochemistry (metallurgy) technologies (processes) that contribute to this development because of its flexibility, relatively high recovery rate and extraction selectivity of critical metals, and possibilities of eliminating secondary waste. In this review, critical evaluation is carried out on the aspects of (1) understanding the features of different hydrochemistry processes for recycling of (critical) metals from electronic waste; (2) identifying the difficulties for a process to be implemented into industrial application which still originate from the high complexity of electronic waste and the secondary waste generation, e.g., wastewater; (3) defining circulability of metals to be recovered and recognizing their potentials to zero waste scheme. According to the evaluation, sustainable even zero waste processing is expected to be achieved for electronic waste treatment in the long term that it is preferred to reduce or prevent the generation of electronic waste and improve material efficiency from the whole life cycle of electronic products.
Load More