CC
Changlun Chen
Author with expertise in Graphene: Properties, Synthesis, and Applications
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(0% Open Access)
Cited by:
4,864
h-index:
90
/
i10-index:
211
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Highly Efficient Enrichment of Radionuclides on Graphene Oxide-Supported Polyaniline

Yubing Sun et al.Jul 31, 2013
Graphene oxide-supported polyaniline (PANI@GO) composites were synthesized by chemical oxidation and were characterized by SEM, Raman and FT-IR spectroscopy, TGA, potentiometric titrations, and XPS. The characterization indicated that PANI can be grafted onto the surface of GO nanosheets successfully. The sorption of U(VI), Eu(III), Sr(II), and Cs(I) from aqueous solutions as a function of pH and initial concentration on the PANI@GO composites was investigated. The maximum sorption capacities of U(VI), Eu(III), Sr(II), and Cs(I) on the PANI@GO composites at pH 3.0 and T = 298 K calculated from the Langmuir model were 1.03, 1.65, 1.68, and 1.39 mmol·g–1, respectively. According to the XPS analysis of the PANI@GO composites before and after Eu(III) desorption, nitrogen- and oxygen-containing functional groups on the surface of PANI@GO composites were responsible for radionuclide sorption, and that radionuclides can hardly be extracted from the nitrogen-containing functional groups. Therefore, the chemical affinity of radionuclides for nitrogen-containing functional groups is stronger than that for oxygen-containing functional groups. This paper focused on the application of PANI@GO composites as suitable materials for the preconcentration and removal of lanthanides and actinides from aqueous solutions in environmental pollution management in a wide range of acidic to alkaline conditions.
0

Removal of Pb(ii) ions from aqueous solutions on few-layered graphene oxide nanosheets

Guixia Zhao et al.Jan 1, 2011
Few-layered graphene oxide (FGO) was synthesized from graphite by using the modified Hummers method, and was characterized by scanning electron microscopy, atomic force microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. The prepared FGO was used to adsorb Pb(II) ions from aqueous solutions. The abundant oxygen-containing groups on the surfaces of FGO played an important role in Pb(II) ion adsorption on FGO. The adsorption of Pb(II) ions on FGO was dependent on pH values and independent of ionic strength. The adsorption of Pb(II) ions on FGO was mainly dominated by strong surface complexation. From the adsorption isotherms, the maximum adsorption capacities (Csmax) of Pb(II) ions on FGO calculated from the Langmuir model were about 842, 1150, and 1850 mg g−1 at 293, 313, and 333 K, respectively, higher than any currently reported. The FGO had the highest adsorption capacities of today's nanomaterials. The thermodynamic parameters calculated from the temperature dependent adsorption isotherms indicated that the adsorption of Pb(II) ions on FGO was a spontaneous and endothermic process.
0

Mutual Effects of Pb(II) and Humic Acid Adsorption on Multiwalled Carbon Nanotubes/Polyacrylamide Composites from Aqueous Solutions

Shubin Yang et al.Mar 11, 2011
This paper examines the adsorption of Pb(II) and a natural organic macromolecular compound (humic acid, HA) on polyacrylamide (PAAM) -grafted multiwalled carbon nanotubes (denoted as MWCNTs/PAAM), prepared by an N2-plasma-induced grafting technique. The mutual effects of HA/Pb(II) on Pb(II) and HA adsorption on MWCNTs/PAAM, as well as the effects of pH, ionic strength, HA/Pb(II) concentrations, and the addition sequences of HA/Pb(II) were investigated. The results indicated that Pb(II) and HA adsorption were strongly dependent on pH and ionic strength. The presence of HA led to a strong increase in Pb(II) adsorption at low pH and a decrease at high pH, whereas the presence of Pb(II) led to an increase in HA adsorption. The adsorbed HA contributed to modification of adsorbent surface properties and partial complexation of Pb(II) with the adsorbed HA. Different effects of HA/Pb(II) concentrations and addition sequences on Pb(II) and HA adsorption were observed, indicating different adsorption mechanisms. After adsorption of HA on MWCNTs/PAAM, the adsorption capacity for Pb(II) was enhanced at pH 5.0; the adsorption capacity for HA was also enhanced after Pb(II) adsorption on MWCNTs/PAAM. These results are important for estimating and optimizing the removal of metal ions and organic substances by use of MWCNT/PAAM composites.
0

Interaction between Eu(III) and Graphene Oxide Nanosheets Investigated by Batch and Extended X-ray Absorption Fine Structure Spectroscopy and by Modeling Techniques

Yubing Sun et al.May 2, 2012
The interaction mechanism between Eu(III) and graphene oxide nanosheets (GONS) was investigated by batch and extended X-ray absorption fine structure (EXAFS) spectroscopy and by modeling techniques. The effects of pH, ionic strength, and temperature on Eu(III) adsorption on GONS were evaluated. The results indicated that ionic strength had no effect on Eu(III) adsorption on GONS. The maximum adsorption capacity of Eu(III) on GONS at pH 6.0 and T = 298 K was calculated to be 175.44 mg·g–1, much higher than any currently reported. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Eu(III) adsorption on GONS was an endothermic and spontaneous process. Results of EXAFS spectral analysis indicated that Eu(III) was bound to ∼6–7 O atoms at a bond distance of ∼2.44 Å in the first coordination shell. The value of Eu–C bond distance confirmed the formation of inner-sphere surface complexes on GONS. Surface complexation modeling gave an excellent fit with the predominant mononuclear monodentate >SOEu2+ and binuclear bidentate (>SO)2Eu2(OH)22+ complexes. This paper highlights the application of GONS as a suitable material for the preconcentration and removal of trivalent lanthanides and actinides from aqueous solutions in environmental pollution management.
0

Removal of Cu(II) and Fulvic Acid by Graphene Oxide Nanosheets Decorated with Fe3O4 Nanoparticles

Jie Li et al.Sep 5, 2012
Graphene oxide/Fe3O4 (GO/Fe3O4) composites were synthesized and characterized by scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The removal of Cu(II) and a natural organic macromolecule (fulvic acid (FA)) by GO/Fe3O4 was investigated. The mutual effects of FA/Cu(II) on Cu(II) and FA sorption onto GO/Fe3O4, as well as the effect of pH, ionic strength, FA/Cu(II) concentrations, and the addition sequences of FA/Cu(II) were examined. The results indicated that Cu(II) sorption on GO/Fe3O4 were strongly dependent on pH and independent of ionic strength, indicating that the sorption was mainly dominated by inner-sphere surface complexation rather than outer-sphere surface complexation or ion exchange. The presence of FA leads to a strong increase in Cu(II) sorption at low pH and a decrease at high pH, whereas the presence of Cu(II) led to an increase in FA sorption. The adsorbed FA contributes to the modification of sorbent surface properties and partial complexation of Cu(II) with FA adsorbed. Different effects of FA/Cu(II) concentrations and addition sequences on Cu(II) and FA sorption were observed, indicating the difference in sorption mechanisms. After GO/Fe3O4 adsorbed FA, the sorption capacity for Cu(II) was enhanced at pH 5.3, and the sorption capacity for FA was also enhanced after Cu(II) sorption on GO/Fe3O4. These results are important for estimating and optimizing the removal of metal ions and organic substances by GO/Fe3O4 composites.
0

Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II)

Changlun Chen et al.Sep 3, 2008
Multiwall carbon nanotube (MWCNT)/iron oxide magnetic composites were prepared, and were characterized by scan electron microscopy using a field emission scanning electron microscope, X-ray diffraction and vibrating sample magnetometer. The adsorptions of Ni(II) and Sr(II) onto MWCNT/iron oxide magnetic composites were studied as a function of pH and ionic strength. The results show that the adsorptions of Ni(II) and Sr(II) on the magnetic composites is strongly dependent on pH and ionic strength. The adsorption capacity of the magnetic composites is much higher than that of MWCNTs and iron oxides. The solid magnetic composites can be separated from the solution by a magnetic process. The Langmuir model fits the adsorption isotherm data of Ni(II) better than the Freundlich model. Results of desorption study shows that Ni(II) adsorbed onto the magnetic composites can be easily desorbed at pH < 2.0. MWCNT/iron oxide magnetic composites may be a promising candidate for pre-concentration and solidification of heavy metal ions and radionuclides from large volumes of aqueous solution, as required for remediation purposes.
0

Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation

Yi Xie et al.Jan 30, 2019
The rapid growth in nuclear industries such as uranium ores mining, nuclear energy generation, spent-fuel treatment and nuclear weapon manufacture has caused a legacy of uranium contamination in the aquatic environment, which poses a potential threat to the ecological environment and human health. The safe and effective disposal of uranium-contaminated water has thus been an urgent requirement. For decades, various materials have been shown to be capable for removing uranium from aqueous solution by adsorption technique, namely inorganic materials (e.g., clay minerals, metal oxides, mesoporous silica), organic polymers (e.g., resins, cellulose, chitosan), carbon family materials (e.g., mesoporous carbon, carbon nanotubes, graphene oxides), and porous framework materials (e.g., covalent organic frameworks, metal-organic frameworks). In this review, we provide a systematic and comprehensive overview of the researches conducted from 2005 to 2018 for uranium removal from aqueous solution by these emerging materials. The different approaches in the determination of the adsorption mechanisms between uranium and adsorbents are also briefly summarized, involving macroscopic experimental approaches, microscopic spectroscopic and computational approaches. Finally, we discuss the current limitations and propose future research perspectives in hopes of inspiring more dramatic advancements in the material and environment remediation fields.
0
Paper
Citation456
0
Save
0

Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes

Di Xu et al.Oct 24, 2007
Oxidized multiwalled carbon nanotubes (MWCNTs) were employed as sorbent to study the sorption characteristic of Pb(II) from aqueous solution as a function of contact time, pH, ionic strength, foreign ions, and oxidized MWCNTs’ contents under ambient conditions using batch technique. The results indicate that sorption of Pb(II) on oxidized MWCNTs is strongly dependent on pH values, and independent of ionic strength and the type of foreign ions. The removal of Pb(II) to oxidized MWCNTs is rather quickly and the kinetic sorption can be described by a pseudo-second-order model very well. Sorption of Pb(II) is mainly dominated by surface complexation rather than ion exchange. The efficient removal of Pb(II) from aqueous solution is limited at pH 7–10. X-ray photoelectron spectroscopy (XPS) is performed to study the sorption mechanism at a molecular level and thereby to identify the species of the sorption processes. The 3-D relationship of pH, Ceq and q indicates that all the data of Ceq − q lie in a straight line with slope −V/m and intercept C0V/m for the same initial concentration of Pb(II) and same content of oxidized MWCNTs of each experimental data.