WM
Wesley Moses
Author with expertise in Marine Biogeochemistry and Ecosystem Dynamics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
2,015
h-index:
23
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation

Anatoly Gitelson et al.Jun 25, 2008
Accurate assessment of phytoplankton chlorophyll-a (chla) concentrations in turbid waters by means of remote sensing is challenging due to the optical complexity of case 2 waters. We have applied a recently developed model of the form [Rrs− 1(λ1) − Rrs− 1(λ2)] × Rrs(λ3) where Rrs(λi) is the remote-sensing reflectance at the wavelength λi, for the estimation of chla concentrations in turbid waters. The objectives of this paper are (a) to validate the three-band model as well as its special case, the two-band model Rrs− 1(λ1) × Rrs(λ3), using datasets collected over a considerable range of optical properties, trophic status, and geographical locations in turbid lakes, reservoirs, estuaries, and coastal waters, and (b) to evaluate the extent to which the three-band model could be applied to the Medium Resolution Imaging Spectrometer (MERIS) and two-band model could be applied to the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate chla in turbid waters. The three-band model was calibrated and validated using three MERIS spectral bands (660–670 nm, 703.75–713.75 nm, and 750−757.5 nm), and the 2-band model was tested using two MODIS spectral bands (λ1 = 662–672, λ3 = 743–753 nm). We assessed the accuracy of chla prediction in four independent datasets without re-parameterization (adjustment of the coefficients) after initial calibration elsewhere. Although the validation data set contained widely variable chla (1.2 to 236 mg m− 3), Secchi disk depth (0.18 to 4.1 m), and turbidity (1.3 to 78 NTU), chla predicted by the three-band algorithm was strongly correlated with observed chla (r2 > 0.96), with a precision of 32% and average bias across data sets of − 4.9% to 11%. Chla predicted by the two-band algorithm was also closely correlated with observed chla (r2 > 0.92); however, the precision declined to 57%, and average bias across the data sets was 18% to 50.3%. These findings imply that, provided that an atmospheric correction scheme for the red and NIR bands is available, the extensive database of MERIS and MODIS imagery could be used for quantitative monitoring of chla in turbid waters.
0
Paper
Citation567
0
Save
0

Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach

Nima Pahlevan et al.Feb 7, 2020
Consistent, cross-mission retrievals of near-surface concentration of chlorophyll-a (Chla) in various aquatic ecosystems with broad ranges of trophic levels have long been a complex undertaking. Here, we introduce a machine-learning model, the Mixture Density Network (MDN), that largely outperforms existing algorithms when applied across different bio-optical regimes in inland and coastal waters. The model is trained and validated using a sizeable database of co-located Chla measurements (n = 2943) and in situ hyperspectral radiometric data resampled to simulate the Multispectral Instrument (MSI) and the Ocean and Land Color Imager (OLCI) onboard Sentinel-2A/B and Sentinel-3A/B, respectively. Our performance evaluations of the model, via two-thirds of the in situ dataset with Chla ranging from 0.2 to 1209 mg/m3 and a mean Chla of 21.7 mg/m3, suggest significant improvements in Chla retrievals. For both MSI and OLCI, the mean absolute logarithmic error (MAE) and logarithmic bias (Bias) across the entire range reduced by 40–60%, whereas the root mean squared logarithmic error (RMSLE) and the median absolute percentage error (MAPE) improved two-to-three times over those from the state-of-the-art algorithms. Using independent Chla matchups (n < 800) for Sentinel-2A/B and -3A, we show that the MDN model provides most accurate products from recorded images processed via three different atmospheric correction processors, namely the SeaWiFS Data Analysis System (SeaDAS), POLYMER, and ACOLITE, though the model is found to be sensitive to uncertainties in remote-sensing reflectance products. This manuscript serves as a preliminary study on a machine-learning algorithm with potential utility in seamless construction of Chla data records in inland and coastal waters, i.e., harmonized, comparable products via a single algorithm for MSI and OLCI data processing. The model performance is anticipated to enhance by improving the global representativeness of the training data as well as simultaneous retrievals of multiple optically active components of the water column.
0
Paper
Citation336
0
Save
0

Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands

Alexander Gilerson et al.Nov 3, 2010
Remote sensing algorithms that use red and NIR bands for the estimation of chlorophyll-a concentration [Chl] can be more effective in inland and coastal waters than algorithms that use blue and green bands. We tested such two-band and three-band red-NIR algorithms using comprehensive synthetic data sets of reflectance spectra and inherent optical properties related to various water parameters and a very consistent in situ data set from several lakes in Nebraska, USA. The two-band algorithms tested with MERIS bands were Rrs(708)/Rrs(665) and Rrs(753)/Rrs(665). The three-band algorithm with MERIS bands was in the form R3=[Rrs(-1)(665)-Rrs(-1)(708)]×Rrs(753). It is shown that the relationships of both Rrs(708)/Rrs(665) and R3 with [Chl] do not depend much on the absorption by CDOM and non-algal particles, or the backscattering properties of water constituents, and can be defined in terms of water absorption coefficients at the respective bands as well as the phytoplankton specific absorption coefficient at 665 nm. The relationship of the latter with [Chl] was established for [Chl]>1 mg/m3 and then further used to develop algorithms which showed a very good match with field data and should not require regional tuning.
0
Paper
Citation320
0
Save
0

NASA's surface biology and geology designated observable: A perspective on surface imaging algorithms

Kerry Cawse‐Nicholson et al.Feb 21, 2021
The 2017–2027 National Academies' Decadal Survey, Thriving on Our Changing Planet, recommended Surface Biology and Geology (SBG) as a "Designated Targeted Observable" (DO). The SBG DO is based on the need for capabilities to acquire global, high spatial resolution, visible to shortwave infrared (VSWIR; 380–2500 nm; ~30 m pixel resolution) hyperspectral (imaging spectroscopy) and multispectral midwave and thermal infrared (MWIR: 3–5 μm; TIR: 8–12 μm; ~60 m pixel resolution) measurements with sub-monthly temporal revisits over terrestrial, freshwater, and coastal marine habitats. To address the various mission design needs, an SBG Algorithms Working Group of multidisciplinary researchers has been formed to review and evaluate the algorithms applicable to the SBG DO across a wide range of Earth science disciplines, including terrestrial and aquatic ecology, atmospheric science, geology, and hydrology. Here, we summarize current state-of-the-practice VSWIR and TIR algorithms that use airborne or orbital spectral imaging observations to address the SBG DO priorities identified by the Decadal Survey: (i) terrestrial vegetation physiology, functional traits, and health; (ii) inland and coastal aquatic ecosystems physiology, functional traits, and health; (iii) snow and ice accumulation, melting, and albedo; (iv) active surface composition (eruptions, landslides, evolving landscapes, hazard risks); (v) effects of changing land use on surface energy, water, momentum, and carbon fluxes; and (vi) managing agriculture, natural habitats, water use/quality, and urban development. We review existing algorithms in the following categories: snow/ice, aquatic environments, geology, and terrestrial vegetation, and summarize the community-state-of-practice in each category. This effort synthesizes the findings of more than 130 scientists.
0
Paper
Citation229
0
Save