DH
Daniel Hurtmans
Author with expertise in Atmospheric Aerosols and their Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
2,898
h-index:
45
/
i10-index:
116
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation

Audrey Gaudel et al.Jan 1, 2018
The Tropospheric Ozone Assessment Report (TOAR) is an activity of the International Global Atmospheric Chemistry Project. This paper is a component of the report, focusing on the present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Utilizing the TOAR surface ozone database, several figures present the global distribution and trends of daytime average ozone at 2702 non-urban monitoring sites, highlighting the regions and seasons of the world with the greatest ozone levels. Similarly, ozonesonde and commercial aircraft observations reveal ozone’s distribution throughout the depth of the free troposphere. Long-term surface observations are limited in their global spatial coverage, but data from remote locations indicate that ozone in the 21st century is greater than during the 1970s and 1980s. While some remote sites and many sites in the heavily polluted regions of East Asia show ozone increases since 2000, many others show decreases and there is no clear global pattern for surface ozone changes since 2000. Two new satellite products provide detailed views of ozone in the lower troposphere across East Asia and Europe, revealing the full spatial extent of the spring and summer ozone enhancements across eastern China that cannot be assessed from limited surface observations. Sufficient data are now available (ozonesondes, satellite, aircraft) across the tropics from South America eastwards to the western Pacific Ocean, to indicate a likely tropospheric column ozone increase since the 1990s. The 2014–2016 mean tropospheric ozone burden (TOB) between 60°N–60°S from five satellite products is 300 Tg ± 4%. While this agreement is excellent, the products differ in their quantification of TOB trends and further work is required to reconcile the differences. Satellites can now estimate ozone’s global long-wave radiative effect, but evaluation is difficult due to limited in situ observations where the radiative effect is greatest.
0
Paper
Citation556
0
Save
0

The MACC reanalysis: an 8 yr data set of atmospheric composition

Antje Inness et al.Apr 18, 2013
Abstract. An eight-year long reanalysis of atmospheric composition data covering the period 2003–2010 was constructed as part of the FP7-funded Monitoring Atmospheric Composition and Climate project by assimilating satellite data into a global model and data assimilation system. This reanalysis provides fields of chemically reactive gases, namely carbon monoxide, ozone, nitrogen oxides, and formaldehyde, as well as aerosols and greenhouse gases globally at a horizontal resolution of about 80 km for both the troposphere and the stratosphere. This paper describes the assimilation system for the reactive gases and presents validation results for the reactive gas analysis fields to document the data set and to give a first indication of its quality. Tropospheric CO values from the MACC reanalysis are on average 10–20% lower than routine observations from commercial aircrafts over airports through most of the troposphere, and have larger negative biases in the boundary layer at urban sites affected by air pollution, possibly due to an underestimation of CO or precursor emissions. Stratospheric ozone fields from the MACC reanalysis agree with ozonesondes and ACE-FTS data to within ±10% in most seasons and regions. In the troposphere the reanalysis shows biases of −5% to +10% with respect to ozonesondes and aircraft data in the extratropics, but has larger negative biases in the tropics. Area-averaged total column ozone agrees with ozone fields from a multi-sensor reanalysis data set to within a few percent. NO2 fields from the reanalysis show the right seasonality over polluted urban areas of the NH and over tropical biomass burning areas, but underestimate wintertime NO2 maxima over anthropogenic pollution regions and overestimate NO2 in northern and southern Africa during the tropical biomass burning seasons. Tropospheric HCHO is well simulated in the MACC reanalysis even though no satellite data are assimilated. It shows good agreement with independent SCIAMACHY retrievals over regions dominated by biogenic emissions with some anthropogenic input, such as the eastern US and China, and also over African regions influenced by biogenic sources and biomass burning.
0
Paper
Citation491
0
Save
0

Industrial and agricultural ammonia point sources exposed

Martin Damme et al.Nov 30, 2018
Through its important role in the formation of particulate matter, atmospheric ammonia affects air quality and has implications for human health and life expectancy1,2. Excess ammonia in the environment also contributes to the acidification and eutrophication of ecosystems3–5 and to climate change6. Anthropogenic emissions dominate natural ones and mostly originate from agricultural, domestic and industrial activities7. However, the total ammonia budget and the attribution of emissions to specific sources remain highly uncertain across different spatial scales7–9. Here we identify, categorize and quantify the world’s ammonia emission hotspots using a high-resolution map of atmospheric ammonia obtained from almost a decade of daily IASI satellite observations. We report 248 hotspots with diameters smaller than 50 kilometres, which we associate with either a single point source or a cluster of agricultural and industrial point sources—with the exception of one hotspot, which can be traced back to a natural source. The state-of-the-art EDGAR emission inventory10 mostly agrees with satellite-derived emission fluxes within a factor of three for larger regions. However, it does not adequately represent the majority of point sources that we identified and underestimates the emissions of two-thirds of them by at least one order of magnitude. Industrial emitters in particular are often found to be displaced or missing. Our results suggest that it is necessary to completely revisit the emission inventories of anthropogenic ammonia sources and to account for the rapid evolution of such sources over time. This will lead to better health and environmental impact assessments of atmospheric ammonia and the implementation of suitable nitrogen management strategies. Satellite observations reveal over 200 ammonia hotspots associated with agricultural and industrial point sources, which emit much larger quantities of ammonia to the atmosphere than previously thought.
0
Paper
Citation446
0
Save
0

Hyperspectral Earth Observation from IASI: Five Years of Accomplishments

F. Hilton et al.Sep 20, 2011
The Infrared Atmospheric Sounding Interferometer (IASI) forms the main infrared sounding component of the European Organisation for the Exploitation of Meteorological Satellites's (EUMETSAT's) Meteorological Operation (MetOp)-A satellite (Klaes et al. 2007), which was launched in October 2006. This article presents the results of the first 4 yr of the operational IASI mission. The performance of the instrument is shown to be exceptional in terms of calibration and stability. The quality of the data has allowed the rapid use of the observations in operational numerical weather prediction (NWP) and the development of new products for atmospheric chemistry and climate studies, some of which were unexpected before launch. The assimilation of IASI observations in NWP models provides a significant forecast impact; in most cases the impact has been shown to be at least as large as for any previous instrument. In atmospheric chemistry, global distributions of gases, such as ozone and carbon monoxide, can be produced in near–real time, and short-lived species, such as ammonia or methanol, can be mapped, allowing the identification of new sources. The data have also shown the ability to track the location and chemistry of gaseous plumes and particles associated with volcanic eruptions and fires, providing valuable data for air quality monitoring and aircraft safety. IASI also contributes to the establishment of robust long-term data records of several essential climate variables. The suite of products being developed from IASI continues to expand as the data are investigated, and further impacts are expected from increased use of the data in NWP and climate studies in the coming years. The instrument has set a high standard for future operational hyperspectral infrared sounders and has demonstrated that such instruments have a vital role in the global observing system.
0
Paper
Citation415
0
Save
0

Atmospheric ammonia and particulate inorganic nitrogen over the United States

Colette Heald et al.Nov 6, 2012
Abstract. We use in situ observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network, the Midwest Ammonia Monitoring Project, 11 surface site campaigns as well as Infrared Atmospheric Sounding Interferometer (IASI) satellite measurements with the GEOS-Chem model to investigate inorganic aerosol loading and atmospheric ammonia concentrations over the United States. IASI observations suggest that current ammonia emissions are underestimated in California and in the springtime in the Midwest. In California this underestimate likely drives the underestimate in nitrate formation in the GEOS-Chem model. However in the remaining continental United States we find that the nitrate simulation is biased high (normalized mean bias > = 1.0) year-round, except in Spring (due to the underestimate in ammonia in this season). None of the uncertainties in precursor emissions, the uptake efficiency of N2O5 on aerosols, OH concentrations, the reaction rate for the formation of nitric acid, or the dry deposition velocity of nitric acid are able to explain this bias. We find that reducing nitric acid concentrations to 75% of their simulated values corrects the bias in nitrate (as well as ammonium) in the US. However the mechanism for this potential reduction is unclear and may be a combination of errors in chemistry, deposition and sub-grid near-surface gradients. This "updated" simulation reproduces PM and ammonia loading and captures the strong seasonal and spatial gradients in gas-particle partitioning across the United States. We estimate that nitrogen makes up 15−35% of inorganic fine PM mass over the US, and that this fraction is likely to increase in the coming decade, both with decreases in sulfur emissions and increases in ammonia emissions.
0
Paper
Citation281
0
Save
0

Global distributions, time series and error characterization of atmospheric ammonia (NH&lt;sub&gt;3&lt;/sub&gt;) from IASI satellite observations

Martin Damme et al.Mar 21, 2014
Abstract. Ammonia (NH3) emissions in the atmosphere have increased substantially over the past decades, largely because of intensive livestock production and use of fertilizers. As a short-lived species, NH3 is highly variable in the atmosphere and its concentration is generally small, except near local sources. While ground-based measurements are possible, they are challenging and sparse. Advanced infrared sounders in orbit have recently demonstrated their capability to measure NH3, offering a new tool to refine global and regional budgets. In this paper we describe an improved retrieval scheme of NH3 total columns from the measurements of the Infrared Atmospheric Sounding Interferometer (IASI). It exploits the hyperspectral character of this instrument by using an extended spectral range (800–1200 cm−1) where NH3 is optically active. This scheme consists of the calculation of a dimensionless spectral index from the IASI level1C radiances, which is subsequently converted to a total NH3 column using look-up tables built from forward radiative transfer model simulations. We show how to retrieve the NH3 total columns from IASI quasi-globally and twice daily above both land and sea without large computational resources and with an improved detection limit. The retrieval also includes error characterization of the retrieved columns. Five years of IASI measurements (1 November 2007 to 31 October 2012) have been processed to acquire the first global and multiple-year data set of NH3 total columns, which are evaluated and compared to similar products from other retrieval methods. Spatial distributions from the five years data set are provided and analyzed at global and regional scales. In particular, we show the ability of this method to identify smaller emission sources than those previously reported, as well as transport patterns over the ocean. The five-year time series is further examined in terms of seasonality and interannual variability (in particular as a function of fire activity) separately for the Northern and Southern Hemispheres.
0
Paper
Citation234
0
Save