Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
CC
C. Cully
Author with expertise in Space Weather and Magnetospheric Physics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
2,047
h-index:
41
/
i10-index:
65
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Axial Double Probe and Fields Signal Processing for the MMS Mission

R. Ergun et al.Dec 1, 2014
The Axial Double Probe (ADP) instrument measures the DC to ∼100 kHz electric field along the spin axis of the Magnetospheric Multiscale (MMS) spacecraft (Burch et al., Space Sci. Rev., 2014, this issue), completing the vector electric field when combined with the spin plane double probes (SDP) (Torbert et al., Space Sci. Rev., 2014, this issue, Lindqvist et al., Space Sci. Rev., 2014, this issue). Two cylindrical sensors are separated by over 30 m tip-to-tip, the longest baseline on an axial DC electric field ever attempted in space. The ADP on each of the spacecraft consists of two identical, 12.67 m graphite coilable booms with second, smaller 2.25 m booms mounted on their ends. A significant effort was carried out to assure that the potential field of the MMS spacecraft acts equally on the two sensors and that photo- and secondary electron currents do not vary over the spacecraft spin. The ADP on MMS is expected to measure DC electric field with a precision of ∼1 mV/m, a resolution of ∼25 μV/m, and a range of ∼±1 V/m in most of the plasma environments MMS will encounter. The Digital Signal Processing (DSP) units on the MMS spacecraft are designed to perform analog conditioning, analog-to-digital (A/D) conversion, and digital processing on the ADP, SDP, and search coil magnetometer (SCM) (Le Contel et al., Space Sci. Rev., 2014, this issue) signals. The DSP units include digital filters, spectral processing, a high-speed burst memory, a solitary structure detector, and data compression. The DSP uses precision analog processing with, in most cases, >100 dB in dynamic range, better that −80 dB common mode rejection in electric field (E) signal processing, and better that −80 dB cross talk between the E and SCM (B) signals. The A/D conversion is at 16 bits with ∼1/4 LSB accuracy and ∼1 LSB noise. The digital signal processing is powerful and highly flexible allowing for maximum scientific return under a limited telemetry volume. The ADP and DSP are described in this article.
0

The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission

J. Wygant et al.Oct 11, 2013
The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ∼15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrument provides a continuous stream of measurements over the entire orbit of the low frequency electric field vector at 32 samples/s in a survey mode. This survey mode also includes measurements of spacecraft potential to provide information on thermal electron plasma variations and structure. Survey mode spectral information allows the continuous evaluation of the peak value and spectral power in electric, magnetic and density fluctuations from several Hz to 6.5 kHz. On-board cross-spectral data allows the calculation of field-aligned wave Poynting flux along the magnetic field. For higher frequency waveform information, two different programmable burst memories are used with nominal sampling rates of 512 samples/s and 16 k samples/s. The EFW burst modes provide targeted measurements over brief time intervals of 3-d electric fields, 3-d wave magnetic fields (from the EMFISIS magnetic search coil sensors), and spacecraft potential. In the burst modes all six sensor-spacecraft potential measurements are telemetered enabling interferometric timing of small-scale plasma structures. In the first burst mode, the instrument stores all or a substantial fraction of the high frequency measurements in a 32 gigabyte burst memory. The sub-intervals to be downloaded are uplinked by ground command after inspection of instrument survey data and other information available on the ground. The second burst mode involves autonomous storing and playback of data controlled by flight software algorithms, which assess the “highest quality” events on the basis of instrument measurements and information from other instruments available on orbit. The EFW instrument provides 3-d wave electric field signals with a frequency response up to 400 kHz to the EMFISIS instrument for analysis and telemetry (Kletzing et al. Space Sci. Rev. 2013).
0

Derivations of the Total Radiation Belt Electron Content

Jared Pitzel et al.Nov 27, 2024
Abstract We present multiple derivations of the Total Radiation Belt Electron Content (TRBEC), an indicator of the global number of electrons that instantaneously occupy the radiation belts. Derived from electron flux measurements, the TRBEC reduces the spatial information into a scalar quantity that concisely describes global aspects of the system. This index provides a simple, global, and long‐term assessment of the radiation belts that enables systematic analysis. In this work, we examine the TRBEC using the adiabatic invariants of which has been used in previous articles as this coordinate system removes reversible adiabatic effects. We then introduce a new expression to compute the TRBEC using the non‐adiabatic coordinates of , relevant in the contexts of energetic electron precipitation, chorus, and hiss scattering where adiabatic invariant quantities are no longer conserved. From both expressions of the TRBEC we demonstrate that an erroneous factor of that appeared in previous works using the adiabatic derivation led to an overestimate of the reported electron populations. In addition, we quantify electron loss in the outer radiation belt via a case study using the Van Allen Probes data over a 20‐day period from March 2013 specifying particle populations both in terms of the aforementioned adiabatic and non‐adiabatic variables. The total number of electrons in the outer radiation belt reached upwards of electrons at the peak of the storm, a rest mass of roughly 10 g.
0

Examining the Power Law Relationship Between Absorption and Frequency Using Spectral Riometer Data

Robyn Fiori et al.Jan 1, 2025
Abstract High frequency radio wave propagation is sensitive to absorption in the D and lower E‐region ionosphere. Absorption models typically characterize attenuation expected at 30 MHz, meaning scaling relationships are required to map to absorption expected at other frequencies. This is important when evaluating absorption at <20 MHz, as these frequencies are typically used for communication, and are highly sensitive to ionospheric disturbances. Typically, a power law relationship between absorption and frequency with a coefficient of n = −2 is used. This relationship can be demonstrated through consideration of the Appleton‐Hartree equation. This paper examines the performance of this relationship using data from the Kilpisjärvi Atmospheric Imaging Receiver Array for 13–14 November 2012. Using absorption measured at 30 MHz as a baseline, the power law relationship was used to calculated absorption at frequencies of 10–80 MHz. For this event, the power law relationship performed well when the measured absorption at 30 MHz was <1–2 dB, but strongly overestimated measurements as absorption increased. Performance improved when n was allowed to vary as a function of the overall level of absorption at 30 MHz. This accounts for local ionospheric changes associated with absorption events that change the balance of parameters in the Appleton‐Hartree equation causing deviation from n = −2. To further accommodate deviations associated with both local ionospheric disturbances and ambient electromagnetic noise contributions, an empirical relationship relating the logarithm of absorption to frequency was evaluated as a function of overall absorption. Compared to the simplified n = −2 power law relationship between absorption and frequency, the new relationship better represents measured absorption for the event studied.