ZO
Zempachi Ogumi
Author with expertise in Lithium-ion Battery Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(20% Open Access)
Cited by:
3,399
h-index:
78
/
i10-index:
373
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Gas crossover and membrane degradation in polymer electrolyte fuel cells

Masaaki Inaba et al.Apr 19, 2006
Hydrogen gas crossover measurements and durability tests of a single cell under open-circuit conditions were carried out to investigate membrane degradation in polymer electrolyte fuel cells (PEFCs). The limiting current density for hydrogen crossover was approximately 0.8 mA cm−2 at 80 °C under atmospheric pressure, and gas crossover increased with an increase in cell temperature, humidity and hydrogen gas pressure. Under open-circuit conditions, the perfluorinated ionomer electrolyte membrane deteriorated significantly although no net electrochemical reactions took place at the cathode and anode. The mechanism for membrane degradation was discussed in terms of heat generation and hydrogen peroxide formation upon gas crossover and the resulting catalytic combustion, and it was concluded that the latter is the primary reason, in which hydrogen peroxide is most probably formed by gas crossover of oxygen and the resulting catalytic combustion at the anode side. In addition, it was inferred that reactive oxygen radicals (HO and HO2) were formed in the presence of minor impurities such as Fe2+ and Cu2+ ions, which could accelerate the membrane degradation.
0

Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte

Takeshi Abe et al.Jan 1, 2004
Solvated lithium-ion transfer at the interface between the graphite and electrolyte was investigated by ac impedance spectroscopy. Electrolytes consisting of 1 mol dissolved in 1,2-dimethoxyethane (DME) and dimethylsulfoxide (DMSO) were used. Cyclic voltammograms of highly oriented pyrolytic graphite in the above electrolytes showed that solvated lithium ion intercalation occurred below a potential of 1.5 V (vs. In 1 mol electrolyte, impedance spectra of graphite were measured at a potential of 1.1 V. One semicircle was found in the Nyquist plot with a characteristic frequency of 15.8 Hz. For only lithium (nonsolvated lithium) ion intercalation, charge (lithium ion) transfer resistance was observed at a characteristic frequency of less than 0.1 Hz. The temperature-dependence of the charge-transfer resistances for solvated lithium ion transfer and lithium ion-only transfer gave activation energies of around 25 and 53-59 kJ respectively. These results suggest that solvated lithium ion transfer at the interface between graphite and electrolyte should be very fast, and the desolvation process for ion intercalation and deintercalation at the graphite electrode should play an important role in intercalation/deintercalation kinetics at the interface between electrode and electrolyte. © 2004 The Electrochemical Society. All rights reserved.
0

Kinetics of Lithium Ion Transfer at the Interface between Graphite and Liquid Electrolytes: Effects of Solvent and Surface Film

Yuki Yamada et al.Jul 21, 2009
The kinetics of lithium ion transfer at an interface between graphite and liquid electrolyte was studied by ac impedance spectroscopy. Using highly oriented pyrolytic graphite (HOPG) as a model electrode, we evaluated the activation energies of the interfacial lithium ion transfer from the temperature dependences of the interfacial conductivities. When a binary electrolyte consisting of LiClO4 dissolved in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) (1:1 by volume) was used, the activation energy of the interfacial lithium ion transfer was 58 kJ mol−1, while an electrolyte consisting of LiClO4 dissolved in DMC gave an activation energy of 40 kJ mol−1. A calculation with the density functional theory clarified that the solvation ability of EC is higher than that of DMC. Therefore, we concluded that the activation energies of the interfacial lithium ion transfer at graphite reflected the energies for the desolvation of lithium ion from the solvent molecule. Furthermore, the activation energies of the interfacial lithium ion transfer varied in the presence of different surface films (solid electrolyte interphase, SEI). These results suggest that the kinetics of the interfacial lithium ion transfer at graphite is influenced by the compositions of SEI films as well as the desolvation of lithium ion from solvent molecules.
0

LiCoO2Degradation Behavior in the High-Voltage Phase Transition Region and Improved Reversibility with Surface Coating

Akira Yano et al.Nov 12, 2016
The degradation behaviors of bare and Al-oxide coated LiCoO2 in the high-voltage phase transition region were investigated at the charge voltage of 4.7 V. In both materials, two voltage plateaus that indicate phase transitions from the O3 to H1-3 and O1 phases were observed in the first charge/discharge. Bare LiCoO2 exhibited considerably decreased capacity, and increased polarization and charge transfer resistance in the cycle test, whereas these changes were remarkably suppressed in the coated LiCoO2. The phase transitions of the coated LiCoO2 can be assumed to be fairly reversible, since the voltage plateaus remained even after 20 cycles. After the cycle tests, stacking faults were observed throughout the bare LiCoO2 particle. Pitting corrosion occurred on the faults, and the formation of a spinel-like layer was observed on the surface of the cycled bare LiCoO2. The pitting corrosion caused intrinsic capacity fading by Co dissolution. The formation of the spinel-like layer also resulted in effective capacity fading due to the increased polarization. Both the pitting corrosion and the formation of the spinel-like layer were markedly suppressed by the surface coating. Therefore, a surface coating that stabilizes the electrode/electrolyte interface greatly affects the charge/discharge characteristics, even in the high-voltage phase transition region.