KM
Kyung Min
Author with expertise in Nanoparticle-Based Drug Delivery Systems
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(11% Open Access)
Cited by:
2,358
h-index:
31
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Self-assembled hyaluronic acid nanoparticles for active tumor targeting

Ki Choi et al.Sep 27, 2009
Hyaluronic acid nanoparticles (HA-NPs), which are formed by the self-assembly of hydrophobically modified HA derivatives, were prepared to investigate their physicochemical characteristics and fates in tumor-bearing mice after systemic administration. The particle sizes of HA-NPs were controlled in the range of 237–424 nm by varying the degree of substitution of the hydrophobic moiety. When SCC7 cancer cells over-expressing CD44 (the receptor for HA) were treated with fluorescently labeled Cy5.5-HA-NPs, strong fluorescence signals were observed in the cytosol of these cells, suggesting efficient intracellular uptake of HA-NPs by receptor-mediated endocytosis. In contrast, no significant fluorescence signals were observed when Cy5.5-labeled HA-NPs were incubated with normal fibroblast cells (CV-1) or with excess free-HA treated SCC7 cells. Following systemic administration of Cy5.5-labeled HA-NPs with different particle sizes into a tumor-bearing mouse, their biodistribution was monitored as a function of time using a non-invasive near-infrared fluorescence imaging system. Irrespective of the particle size, significant amounts of HA-NPs circulated for two days in the bloodstream and were selectively accumulated into the tumor site. The smaller HA-NPs were able to reach the tumor site more effectively than larger HA-NPs. Interestingly, the concentration of HA-NPs in the tumor site was dramatically reduced when mice were pretreated with an excess of free-HA. These results imply that HA-NPs can accumulate into the tumor site by a combination of passive and active targeting mechanisms.
0
Citation524
0
Save
0

Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy

Kyung Min et al.Feb 8, 2008
To prepare a water-insoluble camptothecin (CPT) delivery carrier, hydrophobically modified glycol chitosan (HGC) nanoparticles were constructed by chemical conjugation of hydrophobic 5β-cholanic acid moieties to the hydrophilic glycol chitosan backbone. Insoluble anticancer drug, CPT, was easily encapsulated into HGC nanoparticles by a dialysis method and the drug loading efficiency was above 80%. CPT-encapsulated HGC (CPT-HGC) nanoparticles formed nano-sized self-aggregates in aqueous media (280–330 nm in diameter) and showed sustained release of CPT for 1 week. Also, HGC nanoparticles effectively protected the active lactone ring of CPT from the hydrolysis under physiological condition, due to the encapsulation of CPT into the hydrophobic cores in the HGC nanoparticles. The CPT-HGC nanoparticles exhibited significant antitumor effects and high tumor targeting ability towards MDA-MB231 human breast cancer xenografts subcutaneously implanted in nude mice. Tumor growth was significantly inhibited after i.v. injection of CPT-HGC nanoparticles at doses of 10 mg/kg and 30 mg/kg, compared to free CPT at dose of 30 mg/kg. The significant antitumor efficacy of CPT-HGC nanoparticles was attributed to the ability of the nanoparticles to show both prolonged blood circulation and high accumulation in tumors, as confirmed by near infrared (NIR) fluorescence imaging systems. Thus, the delivery of CPT to tumor tissues at a high concentration, with the assistance of HGC nanoparticles, exerted a potent therapeutic effect. These results reveal the promising potential of HGC nanoparticles-encapsulated CPT as a stable and effective drug delivery system in cancer therapy.
0

Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice

Jong-Ho Kim et al.Feb 1, 2008
To make a tumor targeting nano-sized drug delivery system, biocompatible and biodegradable glycol chitosan (Mw = 250 kDa) was modified with hydrophobic cholanic acid. The resulting hydrophobically modified glycol chitosans (HGCs) that formed nano-sized self-aggregates in an aqueous medium were investigated as an anticancer drug carrier in cancer treatment. Insoluble anticancer drug, cisplatin (CDDP), was easily encapsulated into the hydrophobic cores of HGC nanoparticles by a dialysis method, wherein the drug loading efficiency was about 80%. The CCDP-encapsulated HGC (CDDP-HGC) nanoparticles were well-dispersed in aqueous media and they formed a nanoparticles structure with a mean diameter about 300–500 nm. As a nano-sized drug carrier, the CDDP-HGC nanoparticles released the drug in a sustained manner for a week and they were also less cytotoxic than was free CDDP, probably because of sustained release of CDDP from the HGC nanoparticles. The tumor targeting ability of CDDP-HGC nanoparticles was confirmed by in vivo live animal imaging with near-infrared fluorescence Cy5.5-labeled CDDP-HGC nanoparticles. It was observed that CDDP-HGC nanoparticles were successfully accumulated by tumor tissues in tumor-bearing mice, because of the prolonged circulation and enhanced permeability and retention (EPR) effect of CDDP-HGC nanoparticles in tumor-bearing mice. As expected, the CDDP-HGC nanoparticles showed higher antitumor efficacy and lower toxicity compared to free CDDP, as shown by changes in tumor volumes, body weights, and survival rates, as well as by immunohistological TUNEL assay data. Collectively, the present results indicate that HGC nanoparticles are a promising carrier for the anticancer drug CDDP.