MS
Mahsa Sina
Author with expertise in Lithium-ion Battery Technology
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
857
h-index:
15
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Narrowing the Gap between Theoretical and Practical Capacities in Li‐Ion Layered Oxide Cathode Materials

Maxwell Radin et al.Jul 4, 2017
+7
M
S
M
Abstract Although layered lithium oxides have become the cathode of choice for state‐of‐the‐art Li‐ion batteries, substantial gaps remain between the practical and theoretical energy densities. With the aim of supporting efforts to close this gap, this work reviews the fundamental operating mechanisms and challenges of Li intercalation in layered oxides, contrasts how these challenges play out differently for different materials (with emphasis on Ni–Co–Al (NCA) and Ni–Mn–Co (NMC) alloys), and summarizes the extensive corpus of modifications and extensions to the layered lithium oxides. Particular emphasis is given to the fundamental mechanisms behind the operation and degradation of layered intercalation electrode materials as well as novel modifications and extensions, including Na‐ion and cation‐disordered materials.
0

New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM

Xuefeng Wang et al.Nov 1, 2017
+9
J
M
X
Lithium metal has been considered the "holy grail" anode material for rechargeable batteries despite the fact that its dendritic growth and low Coulombic efficiency (CE) have crippled its practical use for decades. Its high chemical reactivity and low stability make it difficult to explore the intrinsic chemical and physical properties of the electrochemically deposited lithium (EDLi) and its accompanying solid electrolyte interphase (SEI). To prevent the dendritic growth and enhance the electrochemical reversibility, it is crucial to understand the nano- and mesostructures of EDLi. However, Li metal is very sensitive to beam damage and has low contrast for commonly used characterization techniques such as electron microscopy. Inspired by biological imaging techniques, this work demonstrates the power of cryogenic (cryo)-electron microscopy to reveal the detailed structure of EDLi and the SEI composition at the nanoscale while minimizing beam damage during imaging. Surprisingly, the results show that the nucleation-dominated EDLi (5 min at 0.5 mA cm–2) is amorphous, while there is some crystalline LiF present in the SEI. The EDLi grown from various electrolytes with different additives exhibits distinctive surface properties. Consequently, these results highlight the importance of the SEI and its relationship with the CE. Our findings not only illustrate the capabilities of cryogenic microscopy for beam (thermal)-sensitive materials but also yield crucial structural information on the EDLi evolution with and without electrolyte additives.