UB
Ulrike Brüning
Author with expertise in Metabolic Reprogramming in Cancer Biology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
1,713
h-index:
21
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Fatty acid carbon is essential for dNTP synthesis in endothelial cells

Sandra Schoors et al.Mar 31, 2015
The metabolism of endothelial cells during vessel sprouting remains poorly studied. Here we report that endothelial loss of CPT1A, a rate-limiting enzyme of fatty acid oxidation (FAO), causes vascular sprouting defects due to impaired proliferation, not migration, of human and murine endothelial cells. Reduction of FAO in endothelial cells did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labelling studies in control endothelial cells showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1A silencing reduced these processes and depleted endothelial cell stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1A-silenced endothelial cells. Finally, CPT1 blockade inhibited pathological ocular angiogenesis in mice, suggesting a novel strategy for blocking angiogenesis. This study identifies a crucial role for fatty acid oxidation (FAO) in endothelial cells during angiogenesis, and reveals that fatty-acid-derived carbons are used for the de novo synthesis of nucleotides, and hence FAO stimulates vessel sprouting by increasing endothelial cell proliferation. Peter Carmeliet and colleagues identify a crucial role for the oxidation of fatty acids in endothelial cells during angiogenesis. They show that fatty acids provide the carbons for the de novo synthesis of nucleotides, and hence fatty acid oxidation stimulates vessel sprouting by increasing endothelial cell proliferation. Pharmacological blockade of fatty acid oxidation can reduce pathological angiogenesis in a mouse model of retinopathy of prematurity.
0

MicroRNA-155 Promotes Resolution of Hypoxia-Inducible Factor 1α Activity during Prolonged Hypoxia

Ulrike Brüning et al.Aug 2, 2011
The hypoxia-inducible factor (HIF) is a key regulator of the transcriptional response to hypoxia. While the mechanism underpinning HIF activation is well understood, little is known about its resolution. Both the protein and the mRNA levels of HIF-1α (but not HIF-2α) were decreased in intestinal epithelial cells exposed to prolonged hypoxia. Coincident with this, microRNA (miRNA) array analysis revealed multiple hypoxia-inducible miRNAs. Among these was miRNA-155 (miR-155), which is predicted to target HIF-1α mRNA. We confirmed the hypoxic upregulation of miR-155 in cultured cells and intestinal tissue from mice exposed to hypoxia. Furthermore, a role for HIF-1α in the induction of miR-155 in hypoxia was suggested by the identification of hypoxia response elements in the miR-155 promoter and confirmed experimentally. Application of miR-155 decreased the HIF-1α mRNA, protein, and transcriptional activity in hypoxia, and neutralization of endogenous miR-155 reversed the resolution of HIF-1α stabilization and activity. Based on these data and a mathematical model of HIF-1α suppression by miR-155, we propose that miR-155 induction contributes to an isoform-specific negative-feedback loop for the resolution of HIF-1α activity in cells exposed to prolonged hypoxia, leading to oscillatory behavior of HIF-1α-dependent transcription.