AS
Andrew Sutton
Author with expertise in Catalytic Conversion of Biomass to Fuels and Chemicals
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
1,439
h-index:
28
/
i10-index:
52
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The ultraluminous state revisited: fractional variability and spectral shape as diagnostics of super-Eddington accretion

Andrew Sutton et al.Aug 29, 2013
Although we are nearing a consensus that most ULXs are stellar-mass black holes in a super-Eddington state, little is yet established of the physics of this accretion mode. Here, we use a combined X-ray spectral and timing analysis of a sample of ULXs to investigate this new accretion regime. We suggest a spectral classification scheme that separates ULXs into three classes: a broadened disc class, and two-component hard and soft ultraluminous regimes. At the lowest luminosities the ULX population is dominated by sources with broadened disc spectra, whilst two component spectra are seen at higher luminosities, suggestive of a distinction between ~ Eddington and super-Eddington accretion modes. We find high levels of variability are limited to ULXs with soft ultraluminous spectra, and a few broadened disc sources. Furthermore, the variability is strongest at high energies, suggesting it originates in the harder spectral component. These properties are consistent with current models of super-Eddington emission, where a wind forms a funnel around the central regions of the accretion flow. As the wind provides the soft component this suggests that inclination is the key determinant in the observed X-ray spectra, which is very strongly supported by the variability results if this originates due to clumpy material at the edge of the wind intermittently obscuring our line-of-sight to the central regions of the ULX. The pattern of spectral variability with luminosity in two ULXs that straddle the hard/soft ultraluminous regime boundary is consistent with the wind increasing at higher accretion rates, and thus narrowing the opening angle of the funnel. Hence, this work suggests that most ULXs can be explained as stellar-mass black holes accreting at and above the Eddington limit, with their observed characteristics dominated by two variables: accretion rate and inclination. (abridged)
0
Citation209
0
Save
0

Butene-Rich Alkene Formation from 2,3-Butanediol through Dioxolane Intermediates

Michael Cordon et al.May 30, 2024
The cost-effective production of sustainable aviation fuels (SAF) remains a major challenge within the energy sector. One approach to address this is the fermentation of biomass feedstocks into oxygenates followed by catalytic conversion to alkenes or other oligomerization precursors. 2,3-Butanediol (BDO) is a promising fermentation product due to its four-carbon nature, its decreased microorganism toxicity and associated higher maximum fermentation titers relative to other alcohols and oxygenates, and its capacity to be readily converted into butene isomers and longer chain alkenes. BDO conversion is currently constrained by separation challenges for BDO isolation due to its high boiling point and hydrophilicity. This work expands upon previous BDO reactive separation via dioxolane formation over a solid acid catalyst by investigating the conversion of dioxolanes into alkene mixtures. Dioxolanes were formed from a range of aldehydes and subsequently converted over a Cu/ZSM-5 catalyst (448–523 K) via an ether cleavage, hydrogenation, and dehydration reaction network to form alkene-rich product mixtures (96% C3+ alkene yield, 523 K). This selectivity is greater than that of direct BDO conversion to alkenes over an identical catalyst (89%, 523 K). C3+ alkene selectivity is maximized between 498 and 523 K at complete dioxolane conversion without significant alkene hydrogenation to alkanes. The alkene product distributions can be tailored via both aldehyde selection during dioxolane formation and the dioxolane conversion reaction temperature. Alkene mixtures from dioxolane conversion predominantly reflect the carbon chain length and stereochemistry of BDO and the initial aldehyde at or below 498 K, yet higher reaction temperatures yield alkene mixtures of similar carbon chain distributions, regardless of initial aldehyde selection. Deactivation of the Cu/ZSM-5 catalyst is observed for multiple steps of the overall reaction network but can be minimized by facilitating the complete dioxolane-to-alkene reaction network at temperatures of at least 498 K.