CD
Caren Dymond
Author with expertise in Impact of Climate Change on Forest Wildfires
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
3,113
h-index:
22
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncertain

Werner Kurz et al.Jan 30, 2008
A large carbon sink in northern land surfaces inferred from global carbon cycle inversion models led to concerns during Kyoto Protocol negotiations that countries might be able to avoid efforts to reduce fossil fuel emissions by claiming large sinks in their managed forests. The greenhouse gas balance of Canada's managed forest is strongly affected by naturally occurring fire with high interannual variability in the area burned and by cyclical insect outbreaks. Taking these stochastic future disturbances into account, we used the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) to project that the managed forests of Canada could be a source of between 30 and 245 Mt CO 2 e yr −1 during the first Kyoto Protocol commitment period (2008–2012). The recent transition from sink to source is the result of large insect outbreaks. The wide range in the predicted greenhouse gas balance (215 Mt CO 2 e yr −1 ) is equivalent to nearly 30% of Canada's emissions in 2005. The increasing impact of natural disturbances, the two major insect outbreaks, and the Kyoto Protocol accounting rules all contributed to Canada's decision not to elect forest management. In Canada, future efforts to influence the carbon balance through forest management could be overwhelmed by natural disturbances. Similar circumstances may arise elsewhere if global change increases natural disturbance rates. Future climate mitigation agreements that do not account for and protect against the impacts of natural disturbances, for example, by accounting for forest management benefits relative to baselines, will fail to encourage changes in forest management aimed at mitigating climate change.
0
Paper
Citation507
0
Save
0

CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards

Werner Kurz et al.Dec 27, 2008
The scientific community, forest managers, environmental organizations, carbon-offset trading systems and policy-makers require tools to account for forest carbon stocks and carbon stock changes. In this paper we describe updates to the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) implemented over the past years. This model of carbon-dynamics implements a Tier 3 approach of the Intergovernmental Panel on Climate Change (IPCC) Good Practice Guidance for reporting on carbon stocks and carbon stock changes resulting from Land Use, Land-use Change and Forestry (LULUCF). The CBM-CFS3 is a generic modelling framework that can be applied at the stand, landscape and national levels. The model provides a spatially referenced, hierarchical system for integrating datasets originating from different forest inventory and monitoring programs and includes a structure that allows for tracking of land areas by different land-use and land-use change classes. Ecosystem pools in CBM-CFS3 can be easily mapped to IPCC-defined pools and validated against field measurements. The model uses sophisticated algorithms for converting volume to biomass and explicitly simulates individual annual disturbance events (natural and anthropogenic). Several important scientific updates have been made to improve the representation of ecosystem structure and processes from previous versions of CBM-CFS. These include: (1) an expanded representation of dead organic matter and soil carbon, particularly standing dead trees, and a new algorithm for initializing these pools prior to simulation, (2) a change in the input data requirement for simulating growth from biomass to readily available merchantable volume curves, and new algorithms for converting volume to biomass, (3) improved prediction of belowground biomass, and (4) improved parameters for soil organic matter decay, fire, insect disturbances, and forest management. In addition, an operational-scale version of CBM-CFS3 is freely available and includes tools to import data in standard formats, including the output of several timber supply models that are commonly used in Canada. Although developed for Canadian forests, the flexible nature of the model has enabled it to be adapted for use in several other countries.
0
Paper
Citation493
0
Save
0

An inventory-based analysis of Canada's managed forest carbon dynamics, 1990 to 2008

G. Stinson et al.Nov 15, 2010
Canada's forests play an important role in the global carbon (C) cycle because of their large and dynamic C stocks. Detailed monitoring of C exchange between forests and the atmosphere and improved understanding of the processes that affect the net ecosystem exchange of C are needed to improve our understanding of the terrestrial C budget. We estimated the C budget of Canada's 2.3 × 106 km2 managed forests from 1990 to 2008 using an empirical modelling approach driven by detailed forestry datasets. We estimated that average net primary production (NPP) during this period was 809 ± 5 Tg C yr−1 (352 g C m−2 yr−1) and net ecosystem production (NEP) was 71 ± 9 Tg C yr−1 (31 g C m−2 yr−1). Harvesting transferred 45 ± 4 Tg C yr−1 out of the ecosystem and 45 ± 4 Tg C yr−1 within the ecosystem (from living biomass to dead organic matter pools). Fires released 23 ± 16 Tg C yr−1 directly to the atmosphere, and fires, insects and other natural disturbances transferred 52 ± 41 Tg C yr−1 from biomass to dead organic matter pools, from where C will gradually be released through decomposition. Net biome production (NBP) was only 2 ± 20 Tg C yr−1 (1 g C m−2 yr−1); the low C sequestration ratio (NBP/NPP=0.3%) is attributed to the high average age of Canada's managed forests and the impact of natural disturbances. Although net losses of ecosystem C occurred during several years due to large fires and widespread bark beetle outbreak, Canada's managed forests were a sink for atmospheric CO2 in all years, with an uptake of 50 ± 18 Tg C yr−1 [net ecosystem exchange (NEE) of CO2=−22 g C m−2 yr−1].
0
Paper
Citation285
0
Save