MA
Michael Afentoulis
Author with expertise in Role of Microglia in Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
2,025
h-index:
13
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Experimental Stroke Induces Massive, Rapid Activation of the Peripheral Immune System

Halina Offner et al.Aug 24, 2005
Clinical experimental stroke induces injurious local brain inflammation. However, effects on the peripheral immune system have not been well characterized. We quantified mRNA and protein levels for cytokines, chemokines, and chemokine receptors (CCR) in brain, spinal cord, peripheral lymphoid organs (spleen, lymph node, blood, and cultured mononuclear cells from these sources), and blood plasma after reversible middle cerebral artery occlusion (MCAO) or sham treatment in male C57BL/6 mice. Middle cerebral artery occlusion induced a complex, but organ specific, pattern of inflammatory factors in the periphery. At both 6 and 22 h after MCAO, activated spleen cells from stroke-injured mice secreted significantly enhanced levels of TNF-α, IFN-γ, IL-6, MCP-1, and IL-2. Unstimulated splenocytes expressed increased chemokines and CCR, including MIP-2 and CCR2, CCR7 & CCR8 at 6 h; and MIP-2, IP-10, and CCR1 & CCR2 at 22 h. Also at 22 h, T cells from blood and lymph nodes secreted increased levels of inflammatory cytokines after activation. As expected, there were striking proinflammatory changes in postischemic brain. In contrast, spinal cord displayed suppression of all mediators, suggesting a compensatory response to intracranial events. These data show for the first time that focal cerebral ischemia results in dynamic and widespread activation of inflammatory cytokines, chemokines, and CCR in the peripheral immune system.
0
Citation505
0
Save
0

Splenic Atrophy in Experimental Stroke Is Accompanied by Increased Regulatory T Cells and Circulating Macrophages

Halina Offner et al.Jun 1, 2006
Abstract Induction of stroke not only produces local ischemia and brain damage, but also has profound effects on peripheral immune responses. In the current study, we evaluated effects on spleen and blood cells 4 days after stroke induction. Surprisingly, there was a less inflammatory cytokine profile in the middle cerebral artery occlusion-affected right brain hemisphere at 96 h compared with earlier time points. Moreover, our results demonstrate that stroke leads to splenic atrophy characterized by a reduction in organ size, a drastic loss of splenocyte numbers, and induction of annexin V+ and TUNEL+ cells within the spleen that are in the late stages of apoptosis. The consequence of this process was to reduce T cell proliferation responses and secretion of inflammatory cytokines, resulting in a state of profound immunosuppression. These changes produced a drastic reduction in B cell numbers in spleen and blood, and a novel increase in CD4+FoxP3+ regulatory T cells. Moreover, we detected a striking increase in the percentage of nonapoptotic CD11b+ VLA-4-negative macrophages/monocytes in blood. Immunosuppression in response to brain injury may account for the reduction of inflammatory factors in the stroke-affected brain, but also potentially could curtail protective immune responses in the periphery. These findings provide new evidence to support the contention that damage to the brain caused by cerebral ischemia provides a powerful negative signal to the peripheral immune system that ultimately induces a drastic state of immunosuppression caused by cell death as well as an increased presence of CD4+FoxP3+ regulatory T cells.
0
Citation379
0
Save
0

T- and B-Cell-Deficient Mice with Experimental Stroke have Reduced Lesion Size and Inflammation

Patricia Hum et al.Mar 28, 2007
Stroke induction in immunologically competent mice not only produces local ischemia and brain damage, but also induces early inflammatory changes in brain and peripheral immune responses. Although immune elements clearly are activated after brain vascular occlusion, the relative contribution of T and B lymphocytes to the developing lesion has not been quantified. We evaluated effects 22 h after middle cerebral artery occlusion (90 mins) on histologic injury and peripheral immune activation in severe combined immunodeficient (SCID) mice lacking T and B cells. Cortical and total infarct volumes were strikingly reduced in male SCID mice ( n = 14, 33 ± 4% of contralateral cortex, n = 10, 52 ± 3% of contralateral hemisphere) versus immunologically intact C57BL/6 mice (wild type, n = 9, 57 ± 5% of contralateral cortex, 57 ± 4% of contralateral hemisphere) ( P < 0.01). Striatal infarction was not altered (77 ± 7% of contralateral striatum in SCID, 84 ± 7% in wild type), suggesting that the core of the evolving ischemic lesion was not impacted by lack of T and B cells. As expected, inflammatory factors from immune cells in ischemic SCID brains were essentially absent, with the exception of interleukin-1β increase in both SCID and wild type tissue. Spleen cell numbers were low in SCID mice, but were further reduced 22 h after stroke, with substantial reduction in most inflammatory factors except for increased expression of interferon-γ and macrophage inflammatory protein (MIP)-2. These data quantify the damaging effect of T and B lymphocytes on early, evolving ischemic brain injury, and further implicate interleukin-1β in brain and interferon-γ and MIP-2 in spleen as inflammatory factors produced by cells other than T and B cells.
0

Timing of PD-1 Blockade Is Critical to Effective Combination Immunotherapy with Anti-OX40

David Messenheimer et al.Aug 29, 2017
Purpose: Antibodies specific for inhibitory checkpoints PD-1 and CTLA-4 have shown impressive results against solid tumors. This has fueled interest in novel immunotherapy combinations to affect patients who remain refractory to checkpoint blockade monotherapy. However, how to optimally combine checkpoint blockade with agents targeting T-cell costimulatory receptors, such as OX40, remains a critical question.Experimental Design: We utilized an anti-PD-1-refractory, orthotopically transplanted MMTV-PyMT mammary cancer model to investigate the antitumor effect of an agonist anti-OX40 antibody combined with anti-PD-1. As PD-1 naturally aids in immune contraction after T-cell activation, we treated mice with concurrent combination treatment versus sequentially administering anti-OX40 followed by anti-PD-1.Results: The concurrent addition of anti-PD-1 significantly attenuated the therapeutic effect of anti-OX40 alone. Combination-treated mice had considerable increases in type I and type II serum cytokines and significantly augmented expression of inhibitory receptors or exhaustion markers CTLA-4 and TIM-3 on T cells. Combination treatment increased intratumoral CD4+ T-cell proliferation at day 13, but at day 19, both CD4+ and CD8+ T-cell proliferation was significantly reduced compared with untreated mice. In two tumor models, sequential combination of anti-OX40 followed by anti-PD-1 (but not the reverse order) resulted in significant increases in therapeutic efficacy. Against MMTV-PyMT tumors, sequential combination was dependent on both CD4+ and CD8+ T cells and completely regressed tumors in approximately 30% of treated animals.Conclusions: These results highlight the importance of timing for optimized therapeutic effect with combination immunotherapies and suggest the testing of sequencing in combination immunotherapy clinical trials. Clin Cancer Res; 23(20); 6165-77. ©2017 AACRSee related commentary by Colombo, p. 5999.