CG
Chenxiang Gong
Author with expertise in Perovskite Solar Cell Technology
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
0
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An Equalized Flow Velocity Strategy for Perovskite Colloidal Particles in Flexible Perovskite Solar Cells

Chenxiang Gong et al.May 29, 2024
Abstract The non‐uniform distribution of colloidal particles in perovskite precursor results in an imbalanced response to the shear force during flexible printing process. Herein, it is observed that the continuous disordered migration occurring in perovskite inks significantly contributes to the enlargement of colloidal particles size and diminishes the crystallization activity of the inks. Therefore, a molecular encapsulation architecture by glycerol monostearate to mitigate colloidal particles collisions in the precursor ink, while simultaneously homogenizing the size distribution of perovskite colloids to minimize their diffusion disparities, is devised. The utilization of colloidal particles with a molecular encapsulation structure enables the achievement of uniform deposition during the printing process, thereby effectively balancing the crystallization rate and phase transition in the film and facilitating homogeneous crystallization of perovskite films. The large‐area flexible perovskite device (1.01 cm 2 and 100 cm 2 ) fabricated through printing processes, achieves an efficiency of 24.45% and 15.87%, respectively, and manifests superior environmental stability, maintaining an initial efficiency of 91% after being stored in atmospheric ambiences for 150 days (unencapsulated). This work demonstrates that the dynamic evolution process of colloidal particles in both the precursor ink and printing process represents a crucial stride toward achieving uniform crystallization of perovskite films.
0

A Wenzel Interfaces Design for Homogeneous Solute Distribution Obtains Efficient and Stable Perovskite Solar Cells

Cong Wang et al.Jan 10, 2025
Abstract The coffee‐ring effect, caused by uneven deposition of colloidal particles in perovskite precursor solutions, leads to poor uniformity in perovskite films prepared through large‐area printing. In this work, the surface of SnO 2 is roughened to construct a Wenzel model, successfully achieving a super‐hydrophilic interface. This modification significantly accelerates the spreading of the perovskite precursor solution, reducing the response delay time of perovskite colloidal particles during the printing process. Additionally, the micro‐spherical depression structure on the SnO 2 surface effectively inhibits the migration of colloidal particles toward the edges of liquid film, trapping perovskite colloidal particles at the buried interfaces and improving film uniformity. Due to the synergistic effect of super‐hydrophilicity and micro‐rough structure on the surface of SnO 2 , leading to a substantial improvement in the quality of perovskite crystals. Therefore, the efficiency of printing prepared flexible devices (0.101 cm 2 ) reached 25.42% (certified 25.12%). Moreover, the efficiency of rigid and flexible large‐scale perovskite solar modules (PSMs) based on meniscus‐coating manufacture reached 21.34% and 16.99% (100 cm 2 ), respectively, and demonstrated superior environmental stability by maintaining an initial efficiency of 91% after being stored in atmospheric conditions for 2000 h, offering practical guidance for fabricating high‐performance and stable large‐scale perovskite solar cells (PSCs).