DP
D. Paneque
Author with expertise in High-Energy Astrophysics and Particle Acceleration Studies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(100% Open Access)
Cited by:
4,502
h-index:
109
/
i10-index:
332
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

FERMI-LAT OBSERVATIONS OF HIGH-ENERGY γ-RAY EMISSION TOWARD THE GALACTIC CENTER

M. Ajello et al.Feb 26, 2016
The Fermi Large Area Telescope (LAT) has provided the most detailed view to date of the emission towards the Galactic centre (GC) in high-energy gamma-rays. This paper describes the analysis of data taken during the first 62 months of the mission in the energy range 1-100 GeV from a $15^\circ \times 15^\circ$ region about the direction of the GC, and implications for the interstellar emissions produced by cosmic ray (CR) particles interacting with the gas and radiation fields in the inner Galaxy and for the point sources detected. Specialised interstellar emission models (IEMs) are constructed that enable separation of the gamma-ray emission from the inner $\sim 1$ kpc about the GC from the fore- and background emission from the Galaxy. Based on these models, the interstellar emission from CR electrons interacting with the interstellar radiation field via the inverse Compton (IC) process and CR nuclei inelastically scattering off the gas producing gamma-rays via $\pi^0$ decays from the inner $\sim 1$ kpc is determined. The IC contribution is found to be dominant in the region and strongly enhanced compared to previous studies. A catalog of point sources for the $15^\circ \times 15^\circ$ region is self-consistently constructed using these IEMs: the First Fermi-LAT Inner Galaxy point source Catalog (1FIG). After subtracting the interstellar emission and point-source contributions from the data a residual is found that is a sub-dominant fraction of the total flux. If spatial templates that peak toward the GC are used to model the positive residual and included in the total model for the $15^\circ \times 15^\circ$ region, the agreement with the data improves, but none of the additional templates account for all of the residual structure. The spectrum of the positive residual modelled with these templates has a strong dependence on the choice of IEM. [Abridged]
0

MAGIC DISCOVERY OF VERY HIGH ENERGY EMISSION FROM THE FSRQ PKS 1222+21

Jelena Aleksić et al.Feb 25, 2011
Very High Energy (VHE) gamma-ray emission from the flat spectrum radio quasar (FSRQ) PKS 1222+21 (4C 21.35, z=0.432) was detected with the MAGIC Cherenkov telescopes during a short observation (~0.5 hr) performed on 2010 June 17. The MAGIC detection coincides with high energy MeV/GeV gamma-ray activity measured by the Large Area Telescope (LAT) on board the Fermi satellite. The VHE spectrum measured by MAGIC extends from about 70 GeV up to at least 400 GeV and can be well described by a power law dN/dE \propto E^-Gamma with a photon index Gamma= 3.75+/-0.27stat +/-0.2syst. The averaged integral flux above 100 GeV is (4.56+/-0.46)x10^(-10) cm^-2 s^-1 (~1 Crab Nebula flux). The VHE flux measured by MAGIC varies significantly within the 30 min exposure implying a flux doubling time of about 10 min. The VHE and MeV/GeV spectra, corrected for the absorption by the extragalactic background light (EBL), can be described by a single power law with photon index 2.72+/-0.34 between 3 GeV and 400 GeV, and is consistent with emission belonging to a single component in the jet. The absence of a spectral cutoff constrains the gamma-ray emission region outside the Broad Line Region, which would otherwise absorb the VHE gamma-rays. Together with the detected fast variability, this challenges present emission models from jets in FSRQ. Moreover, the combined Fermi/LAT and MAGIC spectral data yield constraints on the density of the Extragalactic Background Light in the UV-optical to near-infrared range that are compatible with recent models.
0

THE SPECTRUM AND MORPHOLOGY OF THEFERMIBUBBLES

M. Ackermann et al.Sep 5, 2014
The Fermi bubbles are two large structures in the gamma-ray sky extending to 55° above and below the Galactic center. We analyze 50 months of Fermi Large Area Telescope data between 100 MeV and 500 GeV above 10° in Galactic latitude to derive the spectrum and morphology of the Fermi bubbles. We thoroughly explore the systematic uncertainties that arise when modeling the Galactic diffuse emission through two separate approaches. The gamma-ray spectrum is well described by either a log parabola or a power law with an exponential cutoff. We exclude a simple power law with more than 7σ significance. The power law with an exponential cutoff has an index of 1.9 ± 0.2 and a cutoff energy of 110 ± 50 GeV. We find that the gamma-ray luminosity of the bubbles is erg s−1. We confirm a significant enhancement of gamma-ray emission in the southeastern part of the bubbles, but we do not find significant evidence for a jet. No significant variation of the spectrum across the bubbles is detected. The width of the boundary of the bubbles is estimated to be deg. Both inverse Compton (IC) models and hadronic models including IC emission from secondary leptons fit the gamma-ray data well. In the IC scenario, synchrotron emission from the same population of electrons can also explain the WMAP and Planck microwave haze with a magnetic field between 5 and 20 μG.
0
Citation295
0
Save
0

DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA

Fabio Acero et al.Apr 1, 2016
ABSTRACT Most of the celestial γ rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within ∼4° of the Galactic Center.
Load More