Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
AR
Alexander Rivest
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
1,228
h-index:
4
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cell type–specific genetic and optogenetic tools reveal hippocampal CA2 circuits

Keigo Kohara et al.Dec 15, 2013
The authors use cell type–specific transgenic mouse lines, optogenetics and patch-clamp recordings to provide new insights into hippocampal anatomy and function. They find that dentate granule cells of the hippocampus, which were believed to not project to CA2, do indeed send functional monosynaptic inputs to CA2 pyramidal cells. CA2 innervates CA1, but, unlike CA3, projects preferentially to the deep rather than superficial sublayer of CA1. Moreover, the authors find that layer 3 of the entorhinal cortex does not project to CA2. The formation and recall of episodic memory requires precise information processing by the entorhinal-hippocampal network. For several decades, the trisynaptic circuit entorhinal cortex layer II (ECII)→dentate gyrus→CA3→CA1 and the monosynaptic circuit ECIII→CA1 have been considered the primary substrates of the network responsible for learning and memory. Circuits linked to another hippocampal region, CA2, have only recently come to light. Using highly cell type–specific transgenic mouse lines, optogenetics and patch-clamp recordings, we found that dentate gyrus cells, long believed to not project to CA2, send functional monosynaptic inputs to CA2 pyramidal cells through abundant longitudinal projections. CA2 innervated CA1 to complete an alternate trisynaptic circuit, but, unlike CA3, projected preferentially to the deep, rather than to the superficial, sublayer of CA1. Furthermore, contrary to existing knowledge, ECIII did not project to CA2. Our results allow a deeper understanding of the biology of learning and memory.
0

The Alzheimer's Aβ-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration

Lincoln Johnson et al.Aug 20, 2002
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in older individuals worldwide. The disease is characterized by abnormal extracellular deposits, known as drusen, that accumulate along the basal surface of the retinal pigmented epithelium. Although drusen deposition is common in older individuals, large numbers of drusen and/or extensive areas of confluent drusen represent a significant risk factor for AMD. Widespread drusen deposition is associated with retinal pigmented epithelial cell dysfunction and degeneration of the photoreceptor cells of the neural retina. Recent studies have shown that drusen contain a variety of immunomodulatory molecules, suggesting that the process of drusen formation involves local inflammatory events, including activation of the complement cascade. Similar observations in Alzheimer's disease (AD) have lead to the hypothesis that chronic localized inflammation is an important element of AD pathogenesis, with significant neurodegenerative consequences. Accordingly, the amyloid beta (Aβ) peptide, a major constituent of neuritic plaques in AD, has been implicated as a primary activator of complement in AD. Here we show that Aβ is associated with a substructural vesicular component within drusen. Aβ colocalizes with activated complement components in these “amyloid vesicles,” thereby identifying them as potential primary sites of complement activation. Thus, Aβ deposition could be an important component of the local inflammatory events that contribute to atrophy of the retinal pigmented epithelium, drusen biogenesis, and the pathogenesis of AMD.