OH
Oscar Hartogensis
Author with expertise in Global Forest Drought Response and Climate Change
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
652
h-index:
29
/
i10-index:
51
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques

David Williams et al.Jul 6, 2004
Understanding and modeling water exchange in arid and semiarid ecosystems is complicated by the very heterogeneous distribution of vegetation and moisture inputs, and the difficulty of measuring and validating component fluxes at a common scale. We combined eddy covariance (EC), sap flow, and stable isotope techniques to investigate the responses of transpiration and soil evaporation to an irrigation event in an olive (Olea europaea L.) orchard in Marrakech, Morocco. The primary goal was to evaluate the usefulness of stable isotope measurements of water vapor in the turbulent boundary layer for partitioning evapotranspiration under such dynamic conditions. The concentration and deuterium isotope composition (δ2H) of water vapor was collected from different heights within the ecosystem boundary layer of the olive canopy before and over several days following a 100 mm surface irrigation. ‘Keeling plots’ (isotope turbulent mixing relationships) were generated from these data to estimate the fractions of evaporation and transpiration contributing to the total evapotranspiration (ET) flux. Transpiration accounted for 100% of total ET prior to irrigation, but only 69–86% of ET during peak midday fluxes over the 5-day period following irrigation. The rate of soil evaporation and plant transpiration at the stand level was calculated from eddy covariance measurements and the evaporation and transpiration fractions from isotope measurements. Soil evaporation rate was positively correlated with daily atmospheric vapor pressure deficit (D), but transpiration was not. Component fluxes estimated from the isotope technique were then compared to those obtained from scaled sap flow measurements. Sap flow in multiple-stemmed trees increased following the irrigation, but large single-stemmed trees did not. We matched the source area for eddy covariance estimates of total ET fluxes with scaled sap flow estimates developed for the different tree types. Soil evaporation was determined from the difference between total ET and the scaled sap flow. Ecosystem-level transpiration and soil evaporation estimated by the isotope approach were within 4 and 15% of those estimated by scaled sap flow, respectively, for periods of peak fluxes at midday. Our data illustrate the utility of the isotope ‘Keeling plot’ approach for partitioning ET at the ecosystem scale on short time steps and the importance of accurate spatial representation of scaled sap flow for comparison with eddy covariance measurements of ET.
0
Paper
Citation465
0
Save
0

The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence

Marie Lothon et al.Oct 16, 2014
Abstract. Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.
0
Paper
Citation187
0
Save