Angewandte Chemie International EditionVolume 43, Issue 10 p. 1229-1233 Communication Visible-Light-Harvesting Organogel Composed of Cholesterol-Based Perylene Derivatives† Kazunori Sugiyasu, Kazunori Sugiyasu Department of Chemistry & Biochemisry, Graduate School of Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812–8581, Japan, Fax: (+81) 92-642-3611Search for more papers by this authorNorifumi Fujita Dr., Norifumi Fujita Dr. Department of Chemistry & Biochemisry, Graduate School of Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812–8581, Japan, Fax: (+81) 92-642-3611Search for more papers by this authorSeiji Shinkai Prof. Dr., Seiji Shinkai Prof. Dr. [email protected] Department of Chemistry & Biochemisry, Graduate School of Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812–8581, Japan, Fax: (+81) 92-642-3611Search for more papers by this author Kazunori Sugiyasu, Kazunori Sugiyasu Department of Chemistry & Biochemisry, Graduate School of Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812–8581, Japan, Fax: (+81) 92-642-3611Search for more papers by this authorNorifumi Fujita Dr., Norifumi Fujita Dr. Department of Chemistry & Biochemisry, Graduate School of Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812–8581, Japan, Fax: (+81) 92-642-3611Search for more papers by this authorSeiji Shinkai Prof. Dr., Seiji Shinkai Prof. Dr. [email protected] Department of Chemistry & Biochemisry, Graduate School of Engineering, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812–8581, Japan, Fax: (+81) 92-642-3611Search for more papers by this author First published: 25 February 2004 https://doi.org/10.1002/anie.200352458Citations: 429 † We thank Hongyue Li and Yumiko Kitada at Kyushu University for 1H NMR and AFM measurements. This work is financially supported by the 21st Century COE Project, "Functional Innovation of Molecular Informatics". Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract A rich harvest: A visible-light-harvesting system has been created utilizing an organogel medium (see picture; the inset shows different gel mixtures). Mixing four different perylene derivatives in the gel phase sets up an energy gradient in the gel fibrils. The well-defined nanofibers harvest a wide range of light energy in the visible region (i.e., sunlight) to the energy sink in a stepwise manner. Supporting Information Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2004/z52458_s.pdf or from the author. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1 1aW. Kühlbrandt, D. N. Wang, Y. Fujiyoshi, Nature 1994, 367, 614–621; 10.1038/367614a0 CASPubMedWeb of Science®Google Scholar 1bG. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaite-Lawless, M. Z. Papiz, R. J. Cogdell, N. W. Isaacs, Nature 1995, 374, 517–521; 10.1038/374517a0 CASWeb of Science®Google Scholar 1cX. Hu, A. Damjanovic, T. Ritz, K. Schulten, Proc. Natl. Acad. Sci. USA 1998, 95, 5935–5941. 10.1073/pnas.95.11.5935 CASPubMedWeb of Science®Google Scholar 2 2aS. Prathapan, T. N. Johnson, J. S. Lindsey, J. Am. Chem. Soc. 1993, 115, 7519–7520; 10.1021/ja00069a068 CASWeb of Science®Google Scholar 2bK.-y. Tomizaki, R. S. Loewe, C. Kirmaier, J. K. Schwartz, J. L. Retsek, D. F. Bocian, D. Holten, J. S. Lindsey, J. Org. Chem. 2002, 67, 6519–6534; 10.1021/jo0258002 CASPubMedWeb of Science®Google Scholar 2cA. Nakano, A. Osuka, I. Yamazaki, T. Yamazaki, Y. Nishimura, Angew. Chem. 1998, 110, 3172; 10.1002/(SICI)1521-3757(19981102)110:21<3172::AID-ANGE3172>3.0.CO;2-5 Google ScholarAngew. Chem. Int. Ed. 1998, 37, 3023; 10.1002/(SICI)1521-3773(19981116)37:21<3023::AID-ANIE3023>3.0.CO;2-A CASPubMedWeb of Science®Google Scholar 2dH. S. Cho, H. Rhee, J. K. Song, C. K. Min, M. Takase, N. Aratani, S. Cho, A. Osuka, T. Joo, D. Kim, J. Am. Chem. Soc. 2003, 125, 5849–5860; 10.1021/ja021476g CASPubMedWeb of Science®Google Scholar 2eC. V. K. Sharma, G. A. Broker, J. G. Huddleston, J. W. Baldwin, R. M. Metzger, R. D. Rogers, J. Am. Chem. Soc. 1999, 121, 1137–1144. 10.1021/ja983983x CASWeb of Science®Google Scholar 3 3aC. A. Hunter, R. K. Hyde, Angew. Chem. 1996, 108, 2064–2067; 10.1002/ange.19961081711 Google ScholarAngew. Chem. Int. Ed. Engl. 1996, 35, 1936–1939; 10.1002/anie.199619361 CASWeb of Science®Google Scholar 3bR. Takahashi, Y. Kobuke, J. Am. Chem. Soc. 2003, 125, 2372–2373; 10.1021/ja028325y CASPubMedWeb of Science®Google Scholar 3cT. S. Balaban, R. Goddard, M. Linke-Schaetzel, J.-M. Lehn, J. Am. Chem. Soc. 2003, 125, 4233–4239; 10.1021/ja029548r CASPubMedWeb of Science®Google Scholar 3dM. D. Ward, Chem. Soc. Rev. 1997, 26, 365–375. 10.1039/cs9972600365 CASWeb of Science®Google Scholar 4 4aC. Devadoss, P. Bharathi, J. S. Moore, J. Am. Chem. Soc. 1996, 118, 9635–9644; 10.1021/ja961418t CASWeb of Science®Google Scholar 4bD.-L. Jiang, T. Aida, Nature 1997, 388, 454–456; 10.1038/41290 CASWeb of Science®Google Scholar 4cM.-S. Choi, T. Aida, T. Yamazaki, I. Yamazaki, Angew. Chem. 2001, 113, 3294–3297; 10.1002/1521-3757(20010903)113:17<3294::AID-ANGE3294>3.0.CO;2-1 Google ScholarAngew. Chem. Int. Ed. 2001, 40, 3194–3198; 10.1002/1521-3773(20010903)40:17<3194::AID-ANIE3194>3.0.CO;2-5 CASWeb of Science®Google Scholar 4dA. Adronov, J. M. Fréchet, Chem. Commun. 2000, 1701–1710; 10.1039/b005993p CASWeb of Science®Google Scholar 4eJ. M. Serin, D. W. Brousmiche, J. M. Fréchet, J. Am. Chem. Soc. 2002, 124, 11 848–11 849; 10.1021/ja027564i CASWeb of Science®Google Scholar 4fV. Vicinelli, P. Ceroni, M. Maestri, V. Balzani, M. Gorka, F. Vögtle, J. Am. Chem. Soc. 2002, 124, 6461–6468. 10.1021/ja017672p CASPubMedWeb of Science®Google Scholar 5 5aN. Kimizuka, T. Kunitake, J. Am. Chem. Soc. 1989, 111, 3758–3759; 10.1021/ja00192a049 CASWeb of Science®Google Scholar 5bL. A. J. Chrisstoffels, A. Adronov, J. M. Fréchet, Angew. Chem. 2000, 112, 2247–2251; 10.1002/1521-3757(20000616)112:12<2247::AID-ANGE2247>3.0.CO;2-5 Google ScholarAngew. Chem. Int. Ed. 2000, 39, 2163–2167. 10.1002/1521-3773(20000616)39:12<2163::AID-ANIE2163>3.0.CO;2-X CASPubMedWeb of Science®Google Scholar 6For recent comprehensive reviews see Google Scholar 6aP. Terech, R. G. Weiss, Chem. Rev. 1997, 97, 3133–3160; 10.1021/cr9700282 CASPubMedWeb of Science®Google Scholar 6bD. J. Abdallah, R. G. Weiss, Adv. Mater. 2000, 12, 1237–1247; 10.1002/1521-4095(200009)12:17<1237::AID-ADMA1237>3.0.CO;2-B CASWeb of Science®Google Scholar 6cJ. H. van Esch, B. L. Feringa, Angew. Chem. 2000, 112, 2351–2354; 10.1002/1521-3757(20000703)112:13<2351::AID-ANGE2351>3.0.CO;2-2 Google ScholarAngew. Chem. Int. Ed. 2000, 39, 2263–2266; 10.1002/1521-3773(20000703)39:13<2263::AID-ANIE2263>3.0.CO;2-V CASPubMedWeb of Science®Google Scholar 6dS. Shinkai, K. Murata, J. Mater. Chem. 1998, 8, 485–495; 10.1039/a704820c CASWeb of Science®Google Scholar 6eO. Gronwald, S. Shinkai, Chem. Eur. J. 2001, 7, 4328–4334. 10.1002/1521-3765(20011015)7:20<4328::AID-CHEM4328>3.0.CO;2-S CASPubMedWeb of Science®Google Scholar 7 7aK. Hanabusa, M. Yamada, M. Kimura, H. Shirai, Angew. Chem. 1996, 108, 2086–2088; 10.1002/ange.19961081719 Google ScholarAngew. Chem. Int. Ed. Engl. 1996, 35, 1949–1951; 10.1002/anie.199619491 CASWeb of Science®Google Scholar 7bJ. van Esch, S. De Feyter, R. M. Kellogg, F. De Schryver, B. L. Feringa, Chem. Eur. J. 1997, 3, 1238–1243; 10.1002/chem.19970030811 CASWeb of Science®Google Scholar 7cR. Oda, I. Huc, S. J. Candau, Angew. Chem. 1998, 110, 2835–2838; 10.1002/(SICI)1521-3757(19981002)110:19<2835::AID-ANGE2835>3.0.CO;2-R Google ScholarAngew. Chem. Int. Ed. 1998, 37, 2689–2691; 10.1002/(SICI)1521-3773(19981016)37:19<2689::AID-ANIE2689>3.0.CO;2-Z CASPubMedWeb of Science®Google Scholar 7dK. Yoza, N. Amanokura, Y. Ono, T. Akao, H. Shinmori, M. Takeuchi, S. Shinkai, D. N. Reinhoudt, Chem. Eur. J. 1999, 5, 2722–2729; 10.1002/(SICI)1521-3765(19990903)5:9<2722::AID-CHEM2722>3.0.CO;2-N CASWeb of Science®Google Scholar 7eG. Wang, A. D. Hamilton, Chem. Eur. J. 2002, 8, 1954–1961; 10.1002/1521-3765(20020415)8:8<1954::AID-CHEM1954>3.0.CO;2-X CASPubMedWeb of Science®Google Scholar 7fS. Kiyonaka, S. Shinkai, I. Hamachi, Chem. Eur. J. 2003, 9, 976–983. 10.1002/chem.200390120 CASPubMedWeb of Science®Google Scholar 8 8aS.-i. Tamaru, M. Nakamura, M. Takeuchi, S. Shinkai, Org. Lett. 2001, 3, 3631–3634; 10.1021/ol0165544 CASPubMedWeb of Science®Google Scholar 8bM. Shirakawa, S.-i. Kawano, N. Fujita, K. Sada, S. Shinkai, J. Org. Chem. 2003, 68, 5037–5044. 10.1021/jo0341822 CASPubMedWeb of Science®Google Scholar 9H. Engelkamp, S. Middelbeek, R. J. M. Nolte, Science 1999, 284, 785–788. 10.1126/science.284.5415.785 CASPubMedWeb of Science®Google Scholar 10 10aF. S. Schoonbeek, J. H. van Esch, B. Wegewijs, D. B. A. Rep, M. P. de Haas, T. M. Klapwijk, R. M. Kellogg, B. L. Feringa, Angew. Chem. 1999, 111, 1486–1490; 10.1002/(SICI)1521-3757(19990517)111:10<1486::AID-ANGE1486>3.0.CO;2-A Google ScholarAngew. Chem. Int. Ed. 1999, 38, 1393–1397; 10.1002/(SICI)1521-3773(19990517)38:10<1393::AID-ANIE1393>3.0.CO;2-H CASPubMedWeb of Science®Google Scholar 10bA. Ajayaghosh, S. J. George, J. Am. Chem. Soc. 2001, 123, 5148–5149. 10.1021/ja005933+ CASPubMedWeb of Science®Google Scholar 11 11aY. Zhao, M. R. Wasielewski, Tetrahedron Lett. 1999, 40, 7047–7050; 10.1016/S0040-4039(99)01468-9 CASWeb of Science®Google Scholar 11bC. Ego, D. Marsitzky, S. Becker, J. Zhang, A. C. Grimsdale, K. Müllen, J. D. MacKenzie, C. Silva, R. H. Friend, J. Am. Chem. Soc. 2003, 125, 437–443; 10.1021/ja0205784 CASPubMedWeb of Science®Google Scholar 11cF. Würthner, S. Ahmed, C. Thalacker, T. Debaerdemaeker, Chem. Eur. J. 2002, 8, 4742–4750. 10.1002/1521-3765(20021018)8:20<4742::AID-CHEM4742>3.0.CO;2-L CASPubMedWeb of Science®Google Scholar 12 12aY.-c. Lin, B. Kachar, R. G. Weiss, J. Am. Chem. Soc. 1989, 111, 5542–5551; 10.1021/ja00197a005 CASWeb of Science®Google Scholar 12bK. Murata, M. Aoki, T. Suzuki, T. Harada, H. Kawabata, T. Komori, F. Ohseto, K. Ueda, S. Shinkai, J. Am. Chem. Soc. 1994, 116, 6664–6676; 10.1021/ja00094a023 CASWeb of Science®Google Scholar 12cD. C. Duncan, D. G. Whitten, Langmuir 2000, 16, 6445–6452; 10.1021/la0001631 CASWeb of Science®Google Scholar 12dS.-i. Kawano, N. Fujita, K. J. C. van Bommel, S. Shinkai, Chem. Lett. 2003, 32, 12–13. 10.1246/cl.2003.12 CASWeb of Science®Google Scholar 13The perylene-containing organogel has never been reported. For perylene-based supramolecular systems, see Google Scholar 13aF. Würthner, C. Thalacker, A. Sautter, W. Schärtl, W. Ibach, O. Hollricher, Chem. Eur. J. 2000, 6, 3871–3886; 10.1002/1521-3765(20001103)6:21<3871::AID-CHEM3871>3.0.CO;2-4 CASPubMedWeb of Science®Google Scholar 13bF. Würthner, C. Thalacker, S. Diele, C. Tschierske, Chem. Eur. J. 2001, 7, 2245–2253; 10.1002/1521-3765(20010518)7:10<2245::AID-CHEM2245>3.0.CO;2-W CASPubMedWeb of Science®Google Scholar 13cT. van der Boom, R. T. Hayes, Y. Zhao, P. J. Bushard, E. A. Weiss, M. R. Wasielewski, J. Am. Chem. Soc. 2002, 124, 9582–9590; 10.1021/ja026286k CASPubMedWeb of Science®Google Scholar 13dA. P. H. J. Schenning, J. van Herrikhuyzen, P. Jonkheijm, Z. Chen, F. Würthner, E. W. Meijer, J. Am. Chem. Soc. 2002, 124, 10 252–10 253; 10.1021/ja020378s CASWeb of Science®Google Scholar 13eE. Peeters, P. A. van Hal, C. J. Meskers, R. A. J. Janssen, E. W. Meijer, Chem. Eur. J. 2002, 8, 4470–4474; 10.1002/1521-3765(20021004)8:19<4470::AID-CHEM4470>3.0.CO;2-F CASPubMedWeb of Science®Google Scholar 13fF. Würthner, A. Sautter, Org. Biomol. Chem. 2003, 1, 240–243. 10.1039/b208582h CASPubMedWeb of Science®Google Scholar 14For similar reports on gelation-assisted light-harvesting systems, see Google Scholar 14aT. Nakashima, N. Kimizuka, Adv. Mater. 2002, 14, 1113–1116; 10.1002/1521-4095(20020816)14:16<1113::AID-ADMA1113>3.0.CO;2-U CASWeb of Science®Google Scholar 14bA. Ajayaghosh, S. J. George, V. K. Praveen, Angew. Chem. 2003, 115, 346–349; 10.1002/ange.200390077 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 332–335; 10.1002/anie.200390109 CASPubMedWeb of Science®Google Scholar 14cK. Sugiyasu, N. Fujita, M. Takeuchi, S. Yamada, S. Shinkai, Org. Biomol. Chem. 2003, 1, 895–899. 10.1039/b210968a CASPubMedWeb of Science®Google Scholar 15The molecular parameters of 1 a, as estimated by CPK molecular modeling, is ≈5×1 nm. Google Scholar 16H. Langhals, J. Karolin, L. B.-A. Johansson, J. Chem. Soc. Faraday Trans. 1998, 94, 2919; [1 a–d]=1.0×10−5 M: Excitation wavelengths used for 1 a, b, c, and d were 477, 494, 507, and 622 nm, respectively, where these molecules have molar absorptivities of 20 000. 10.1039/a804973d CASWeb of Science®Google Scholar 17 17aF. F. So, S. R. Forrest, Phys. Rev. Lett. 1991, 66, 2649; 10.1103/PhysRevLett.66.2649 CASPubMedWeb of Science®Google Scholar 17bM. H. Hennessy, Z. G. Soos, R. A. Pascal, A. Girlando, Chem. Phys. 1999, 245, 199; 10.1016/S0301-0104(99)00082-8 CASWeb of Science®Google Scholar 17cW. Wang, L.-S. Li, G. Helms, H.-H. Zhou, A. D. Q. Li, J. Am. Chem. Soc. 2003, 125, 1120–1121. 10.1021/ja027186h CASPubMedWeb of Science®Google Scholar 181 b–d are not soluble in the mixed solvent of p-xylene and 1-propanol but form precipitates. From this fact, it is reasonable to deduce that 1 a–d coassemble to form gels. Google Scholar 19To determine how many times the fluorescence of the acceptor was intensified, total fluorescence spectra of mixed systems (spectra b and c in Figure 5 and b and c in Figure 2 of the Supporting Information) were divided into those of donor and acceptors. Thus, we could calculate the values for FIacceptor/FIdonor. Google Scholar 20E. U. Akkaya, H. T. Baytekin, 27th Annual Symposium of International Symposium of Macrocyclic Chemistry (ISMC), 2002, PA1. Google Scholar 21As one of the referees pointed out, the suggested coassembly of 1 a–d should lead to assemblies with a random distribution of the four units, and consequently many different decay pathways are likely to exist, instead of a "clean" decay channel to the lowest energy state of 1 d. Google Scholar 22We have found that when N,N′-di-n-butyl-1,7-bis(4-tert-butylphenoxy)-3,4,9,10-perylenetetracarboxylic diimide (compound 4 without the cholesterol group shown in the Supporting Information) was added as an energy acceptor, emission from 4 was not intensified as for 1 b. This result further supports the view that the structural similarity of the perylene–cholesterol conjugates 1 a–d plays an important role in coassembling acceptors and mediating efficient energy transfer.[18] Google Scholar 23K. J. C. van Bommel, A. Friggeri, S. Shinkai, Angew. Chem. 2003, 115, 1010–1030; 10.1002/ange.200390229 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 980–999. 10.1002/anie.200390284 CASPubMedWeb of Science®Google Scholar 24Cholesterol-based perylene derivatives were synthesized according to the following references: Google Scholar 24aH. Quante, P. Schlichting, U. Rohr, Y. Geerts, K. Müllen, Macromol. Chem. Phys. 1996, 197, 4029–4044; 10.1002/macp.1996.021971205 CASWeb of Science®Google Scholar 24bT. Ishii, R. Iguchi, E. Snip, M. Ikeda, S. Shinkai, Langmuir 2001, 17, 5825–5833; 10.1021/la0107749 CASWeb of Science®Google Scholar 24cA. Böhm, H. Arms, G. Henning, P. Blaschka, US Pat. 6,184,378, 2001; Google Scholar 24dT. Watanabe, N. Miyaura, A. Suzuki, Synlett 1992, 207–210. 10.1055/s-1992-21315 Web of Science®Google Scholar Citing Literature Volume43, Issue10February 27, 2004Pages 1229-1233 ReferencesRelatedInformation