JC
John Chambers
Author with expertise in Pancreatic Islet Dysfunction and Regeneration
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
738
h-index:
6
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Loss-of-function mutations in SLC30A8 protect against type 2 diabetes

Jason Flannick et al.Mar 2, 2014
David Altshuler and colleagues report genotyping or sequencing of ∼150,000 individuals from several population-based cohorts, identifying 12 rare protein-truncating variants in SLC30A8, encoding a pancreatic islet zinc transporter. Carriers of these rare protein-truncating variants in SLC30A8 show reduced risk of type 2 diabetes and reduced glucose levels. Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets1,2,3, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ∼150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8)4 and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels5,6,7. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10−6), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (−0.17 s.d., P = 4.6 × 10−4). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk8,9, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts10,11,12,13,14,15. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.
0
Citation453
0
Save
0

Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls

Jason Flannick et al.May 22, 2019
Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10−3) and candidate genes from knockout mice (P = 5.2 × 10−3). Within our study, the strongest T2D gene-level signals for rare variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect sizes of the rare variants that we observed in established T2D drug targets will require 75,000–185,000 sequenced cases to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to incorporate these associations into future target or gene prioritization efforts. Exome-sequencing analyses of a large cohort of patients with type 2 diabetes and control individuals without diabetes from five ancestries are used to identify gene-level associations of rare variants that are associated with type 2 diabetes.
0
Citation285
0
Save
0

Single-cell RNA sequencing of peripheral blood links cell-type-specific regulation of splicing to autoimmune and inflammatory diseases

Chi Tian et al.Dec 1, 2024
Alternative splicing contributes to complex traits, but whether this differs in trait-relevant cell types across diverse genetic ancestries is unclear. Here we describe cell-type-specific, sex-biased and ancestry-biased alternative splicing in ~1 M peripheral blood mononuclear cells from 474 healthy donors from the Asian Immune Diversity Atlas. We identify widespread sex-biased and ancestry-biased differential splicing, most of which is cell-type-specific. We identify 11,577 independent cis-splicing quantitative trait loci (sQTLs), 607 trans-sGenes and 107 dynamic sQTLs. Colocalization between cis-eQTLs and trans-sQTLs revealed a cell-type-specific regulatory relationship between HNRNPLL and PTPRC. We observed an enrichment of cis-sQTL effects in autoimmune and inflammatory disease heritability. Specifically, we functionally validated an Asian-specific sQTL disrupting the 5′ splice site of TCHP exon 4 that putatively modulates the risk of Graves' disease in East Asian populations. Our work highlights the impact of ancestral diversity on splicing and provides a roadmap to dissect its role in complex diseases at single-cell resolution. This analysis of single-cell RNA sequencing data from peripheral blood mononuclear cells for 474 individuals of diverse Asian ancestries in the Asian Immune Diversity Atlas links cell-type-specific splicing variation with autoimmune and inflammatory disease risk.