YH
Yongshun Huang
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(0% Open Access)
Cited by:
1,745
h-index:
25
/
i10-index:
39
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Synthesis of amidoxime-functionalized Fe3O4@SiO2 core–shell magnetic microspheres for highly efficient sorption of U(VI)

Yingguo Zhao et al.Sep 18, 2013
Amidoxime-functionalized silica coated Fe3O4 (Fe3O4@SiO2-AO) was synthesized and carefully characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transformed infrared spectroscopy, and magnetic measurements. The prepared Fe3O4@SiO2-AO was applied to adsorb U(VI) from aqueous solutions and exhibited enhanced sorption capacity for U(VI) in comparison with raw silica coated Fe3O4 due to the strong chelation of amidoxime to U(VI). Effects of contact time, pH, ionic strength, interfering ions, U(VI) concentration, and temperature on the sorption of U(VI) on Fe3O4@SiO2-AO were investigated. The kinetic process of U(VI) sorption on Fe3O4@SiO2-AO reached equilibrium within 2 h. The sorption was strongly dependent on pH and independent of ionic strength, indicating that the sorption was mainly dominated by inner-sphere surface complexation. The sorption isotherm agreed well with the Langmuir model, having a maximum sorption capacity of 0.441 mmol g−1 at pH = 5.0 ± 0.1 and T = 298 K. The U(VI)-loaded Fe3O4@SiO2-AO could be readily separated from aqueous solutions by an external magnetic field and efficiently regenerated by 1 mol L−1 HCl with only slight decrease in U(VI) sorption capability. Findings of the present work suggest that Fe3O4@SiO2-AO is a potential and suitable candidate for the preconcentration and separation of U(VI) from seawater and contaminated wastewater.
0

In Situ Ion Exchange Synthesis of Strongly Coupled Ag@AgCl/g-C3N4 Porous Nanosheets as Plasmonic Photocatalyst for Highly Efficient Visible-Light Photocatalysis

Shouwei Zhang et al.Nov 26, 2014
A novel efficient Ag@AgCl/g-C3N4 plasmonic photocatalyst was synthesized by a rational in situ ion exchange approach between exfoliated g-C3N4 nanosheets with porous 2D morphology and AgNO3. The as-prepared Ag@AgCl-9/g-C3N4 plasmonic photocatalyst exhibited excellent photocatalytic performance under visible light irradiation for rhodamine B degradation with a rate constant of 0.1954 min–1, which is ∼41.6 and ∼16.8 times higher than those of the g-C3N4 (∼0.0047 min–1) and Ag/AgCl (∼0.0116 min–1), respectively. The degradation of methylene blue, methyl orange, and colorless phenol further confirmed the broad spectrum photocatalytic degradation abilities of Ag@AgCl-9/g-C3N4. These results suggested that an integration of the synergetic effect of suitable size plasmonic Ag@AgCl and strong coupling effect between the Ag@AgCl nanoparticles and the exfoliated porous g-C3N4 nanosheets was superior for visible-light-responsive and fast separation of photogenerated electron–hole pairs, thus significantly improving the photocatalytic efficiency. This work may provide a novel concept for the rational design of stable and high performance g-C3N4-based plasmonic photocatalysts for unique photochemical reaction.