LL
Li Li
Author with expertise in Electrocatalysis for Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(35% Open Access)
Cited by:
2,994
h-index:
47
/
i10-index:
137
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Structural Directed Growth of Ultrathin Parallel Birnessite on β-MnO2 for High-Performance Asymmetric Supercapacitors

Shijin Zhu et al.Jan 24, 2018
Two-dimensional birnessite has attracted attention for electrochemical energy storage because of the presence of redox active Mn4+/Mn3+ ions and spacious interlayer channels available for ions diffusion. However, current strategies are largely limited to enhancing the electrical conductivity of birnessite. One key limitation affecting the electrochemical properties of birnessite is the poor utilization of the MnO6 unit. Here, we assemble β-MnO2/birnessite core–shell structure that exploits the exposed crystal face of β-MnO2 as the core and ultrathin birnessite sheets that have the structure advantage to enhance the utilization efficiency of the Mn from the bulk. Our birnessite that has sheets parallel to each other is found to have unusual crystal structure with interlayer spacing, Mn(III)/Mn(IV) ratio and the content of the balancing cations differing from that of the common birnessite. The substrate directed growth mechanism is carefully investigated. The as-prepared core–shell nanostructures enhance the exposed surface area of birnessite and achieve high electrochemical performances (for example, 657 F g–1 in 1 M Na2SO4 electrolyte based on the weight of parallel birnessite) and excellent rate capability over a potential window of up to 1.2 V. This strategy opens avenues for fundamental studies of birnessite and its properties and suggests the possibility of its use in energy storage and other applications. The potential window of an asymmetric supercapacitor that was assembled with this material can be enlarged to 2.2 V (in aqueous electrolyte) with a good cycling ability.
0

Recent advances in the precise control of isolated single-site catalysts by chemical methods

Li Li et al.May 31, 2018
Abstract The search for constructing high-performance catalysts is an unfailing topic in chemical fields. Recently, we have witnessed many breakthroughs in the synthesis of single-atom catalysts (SACs) and their applications in catalytic systems. They have shown excellent activity, selectivity, stability, efficient atom utilization and can serve as an efficient bridge between homogeneous and heterogenous catalysis. Currently, most SACs are synthesized via a bottom-up strategy; however, drawbacks such as the difficulty in accessing high mass activity and controlling homogeneous coordination environments are inevitably encountered, restricting their potential use in the industrial area. In this regard, a novel top-down strategy has been recently developed to fabricate SACs to address these practical issues. The metal loading can be increased to 5% and the coordination environments can also be precisely controlled. This review highlights approaches to the chemical synthesis of SACs towards diverse chemical reactions, especially the recent advances in improving the mass activity and well-defined local structures of SACs. Also, challenges and opportunities for the SACs will be discussed in the later part.
0

Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites

Jian Yang et al.Jun 13, 2018
Amorphous phosphorus nitride imide nanotubes (HPN) are reported as a novel substrate to stabilize materials containing single-metal sites. Abundant dangling unsaturated P vacancies play a role in stabilization. Ruthenium single atoms (SAs) are successfully anchored by strong coordination interactions between the d orbitals of Ru and the lone pair electrons of N located in the HPN matrix. The atomic dispersion of Ru atoms can be distinguished by X-ray absorption fine structure measurements and spherical aberration correction electron microscopy. Importantly, Ru SAs@PN is an excellent electrocatalyst for the hydrogen evolution reaction (HER) in 0.5 m H2 SO4 , delivering a low overpotential of 24 mV at 10 mA cm-2 and a Tafel slope of 38 mV dec-1 . The catalyst exhibits robust stability in a constant current test at a large current density of 162 mA cm-2 for more than 24 hours, and is operative for 5000 cycles in a cyclic voltammetry test. Additionally, Ru SAs@PN presents a turnover frequency (TOF) of 1.67 H2 s-1 at 25 mV, and 4.29 H2 s-1 at 50 mV, in 0.5 m H2 SO4 solution, outperforming most of the reported hydrogen evolution catalysts. Density functional theory (DFT) calculations further demonstrate that the Gibbs free energy of adsorbed H* over the Ru SAs on PN is much closer to zero compared with the Ru/C and Ru SAs supported on carbon and C3 N4 , thus considerably facilitating the overall HER performance.
Load More