ZQ
Zhiwen Qiu
Author with expertise in Advances in Chemical Sensor Technologies
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(17% Open Access)
Cited by:
1,162
h-index:
28
/
i10-index:
39
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient

Xiaofeng Qiu et al.Sep 22, 2016
All-inorganic and lead-free cesium tin halides (CsSnX3, X=Cl, Br, I) are highly desirable for substituting the organolead halide perovskite solar cells. However, the poor stability of CsSnX3 perovskites has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. In this paper, a two-step sequential deposition method is developed to grow high-quality B-γ-CsSnI3 thin films and their unique phase change in atmosphere is explored in detail. We find the spontaneous oxidative conversion from unstable B-γ-CsSnI3 to air-stable Cs2SnI6 in air. Allowing the phase conversion of the CsSnI3 film to evolve in ambient air it gives the semiconducting perovskite Cs2SnI6 with a bandgap of 1.48 eV and high absorption coefficient (over 105 cm−1 from 1.7 eV). More importantly, the Cs2SnI6 film, for the first time, is adopted as a light absorber layer for a lead-free perovskite solar cell and a preliminary estimate of the power conversion efficiency (PCE) about 1% with open-circuit voltage of 0.51 V and short-circuit current of 5.41 mA/cm2 is realized by optimizing the perovskite absorber thickness. According to the bandgap and the Shockley-Queisser limit, such inorganic perovskite solar cell with higher efficiency and pronounced stability can be expected by material quality improvement and device engineering.
0
Paper
Citation444
0
Save
0

Near Room Temperature, Fast-Response, and Highly Sensitive Triethylamine Sensor Assembled with Au-Loaded ZnO/SnO2 Core–Shell Nanorods on Flat Alumina Substrates

Dianxing Ju et al.Aug 17, 2015
Chemiresistive gas sensors with low power consumption, fast response, and reliable fabrication process for a specific target gas have been now created for many applications. They require both sensitive nanomaterials and an efficient substrate chip for heating and electrical addressing. Herein, a near room working temperature and fast response triethylamine (TEA) gas sensor has been fabricated successfully by designing gold (Au)-loaded ZnO/SnO2 core-shell nanorods. ZnO nanorods grew directly on Al2O3 flat electrodes with a cost-effective hydrothermal process. By employing pulsed laser deposition (PLD) and DC-sputtering methods, the construction of Au nanoparticle-loaded ZnO/SnO2 core/shell nanorod heterostructure is highly controllable and reproducible. In comparison with pristine ZnO, SnO2, and Au-loaded ZnO, SnO2 sensors, Au-ZnO/SnO2 nanorod sensors exhibit a remarkably high and fast response to TEA gas at working temperatures as low as 40 °C. The enhanced sensing property of the Au-ZnO/SnO2 sensor is also discussed with the semiconductor depletion layer model introduced by Au-SnO2 Schottky contact and ZnO/SnO2 N-N heterojunction.
0
Paper
Citation275
0
Save