YK
Yong Kim
Author with expertise in Tissue Engineering and Regenerative Medicine
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
933
h-index:
31
/
i10-index:
58
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages

Dong-Im Cho et al.Jan 10, 2014
Mesenchymal stem cells (MSCs) have been widely studied for their applications in stem cell-based regeneration. During myocardial infarction (MI), infiltrated macrophages have pivotal roles in inflammation, angiogenesis and cardiac remodeling. We hypothesized that MSCs may modulate the immunologic environment to accelerate regeneration. This study was designed to assess the functional relationship between the macrophage phenotype and MSCs. MSCs isolated from bone marrow and bone marrow-derived macrophages (BMDMs) underwent differentiation induced by macrophage colony-stimulating factor. To determine the macrophage phenotype, classical M1 markers and alternative M2 markers were analyzed with or without co-culturing with MSCs in a transwell system. For animal studies, MI was induced by the ligation of the rat coronary artery. MSCs were injected within the infarct myocardium, and we analyzed the phenotype of the infiltrated macrophages by immunostaining. In the MSC-injected myocardium, the macrophages adjacent to the MSCs showed strong expression of arginase-1 (Arg1), an M2 marker. In BMDMs co-cultured with MSCs, the M1 markers such as interleukin-6 (IL-6), IL-1β, monocyte chemoattractant protein-1 and inducible nitric oxide synthase (iNOS) were significantly reduced. In contrast, the M2 markers such as IL-10, IL-4, CD206 and Arg1 were markedly increased by co-culturing with MSCs. Specifically, the ratio of iNOS to Arg1 in BMDMs was notably downregulated by co-culturing with MSCs. These results suggest that the preferential shift of the macrophage phenotype from M1 to M2 may be related to the immune-modulating characteristics of MSCs that contribute to cardiac repair. Bone marrow–derived mesenchymal stem cells (MSCs) transplanted into the heart appear to alter the immunologic environment and may help with recovery following a heart attack. A team led by Youngkeun Ahn and Yong Sook Kim from Chonnam National University Hospital, South Korea, induced heart attacks in rats and then injected MSCs into the damaged heart muscle tissue. The researchers analyzed the surrounding macrophages, a type of white blood cell that rushes to the site of injury, and found a strong expression of the enzyme arginase-1 — a sign that the macrophages were helping with tissue repair. The researchers also characterized macrophages before and after being cultured together with MSCs. They showed that the presence of MSCs shifted the macrophages from the M1 subtype, involved in pro-inflammatory responses, toward the ‘M2’ subtype, involved in dampening inflammation.
0
Citation442
0
Save
0

Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes

Tae Park et al.Nov 4, 2019
Abstract Ischaemic heart disease (IHD) is the leading cause of death worldwide. Although myocardial cell death plays a significant role in myocardial infarction (MI), its underlying mechanism remains to be elucidated. To understand the progression of MI and identify potential therapeutic targets, we performed tandem mass tag (TMT)-based quantitative proteomic analysis using an MI mouse model. Gene ontology (GO) analysis and gene set enrichment analysis (GSEA) revealed that the glutathione metabolic pathway and reactive oxygen species (ROS) pathway were significantly downregulated during MI. In particular, glutathione peroxidase 4 (GPX4), which protects cells from ferroptosis (an iron-dependent programme of regulated necrosis), was downregulated in the early and middle stages of MI. RNA-seq and qRT-PCR analyses suggested that GPX4 downregulation occurred at the transcriptional level. Depletion or inhibition of GPX4 using specific siRNA or the chemical inhibitor RSL3, respectively, resulted in the accumulation of lipid peroxide, leading to cell death by ferroptosis in H9c2 cardiomyoblasts. Although neonatal rat ventricular myocytes (NRVMs) were less sensitive to GPX4 inhibition than H9c2 cells, NRVMs rapidly underwent ferroptosis in response to GPX4 inhibition under cysteine deprivation. Our study suggests that downregulation of GPX4 during MI contributes to ferroptotic cell death in cardiomyocytes upon metabolic stress such as cysteine deprivation.
0

Dual Roles of Graphene Oxide To Attenuate Inflammation and Elicit Timely Polarization of Macrophage Phenotypes for Cardiac Repair

Jin Han et al.Feb 3, 2018
Development of localized inflammatory environments by M1 macrophages in the cardiac infarction region exacerbates heart failure after myocardial infarction (MI). Therefore, the regulation of inflammation by M1 macrophages and their timely polarization toward regenerative M2 macrophages suggest an immunotherapy. Particularly, controlling cellular generation of reactive oxygen species (ROS), which cause M1 differentiation, and developing M2 macrophage phenotypes in macrophages propose a therapeutic approach. Previously, stem or dendritic cells were used in MI for their anti-inflammatory and cardioprotective potentials and showed inflammation modulation and M2 macrophage progression for cardiac repair. However, cell-based therapeutics are limited due to invasive cell isolation, time-consuming cell expansion, labor-intensive and costly ex vivo cell manipulation, and low grafting efficiency. Here, we report that graphene oxide (GO) can serve as an antioxidant and attenuate inflammation and inflammatory polarization of macrophages via reduction in intracellular ROS. In addition, GO functions as a carrier for interleukin-4 plasmid DNA (IL-4 pDNA) that propagates M2 macrophages. We synthesized a macrophage-targeting/polarizing GO complex (MGC) and demonstrated that MGC decreased ROS in immune-stimulated macrophages. Furthermore, DNA-functionalized MGC (MGC/IL-4 pDNA) polarized M1 to M2 macrophages and enhanced the secretion of cardiac repair-favorable cytokines. Accordingly, injection of MGC/IL-4 pDNA into mouse MI models attenuated inflammation, elicited early polarization toward M2 macrophages, mitigated fibrosis, and improved heart function. Taken together, the present study highlights a biological application of GO in timely modulation of the immune environment in MI for cardiac repair. Current therapy using off-the-shelf material GO may overcome the shortcomings of cell therapies for MI.