YY
Yuchio Yanagawa
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
1,781
h-index:
73
/
i10-index:
258
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes

Roman Romanov et al.Dec 19, 2016
The hypothalamus contains the highest diversity of neurons in the brain. Many of these neurons can co-release neurotransmitters and neuropeptides in a use-dependent manner. Investigators have hitherto relied on candidate protein-based tools to correlate behavioral, endocrine and gender traits with hypothalamic neuron identity. Here we map neuronal identities in the hypothalamus by single-cell RNA sequencing. We distinguished 62 neuronal subtypes producing glutamatergic, dopaminergic or GABAergic markers for synaptic neurotransmission and harboring the ability to engage in task-dependent neurotransmitter switching. We identified dopamine neurons that uniquely coexpress the Onecut3 and Nmur2 genes, and placed these in the periventricular nucleus with many synaptic afferents arising from neuromedin S+ neurons of the suprachiasmatic nucleus. These neuroendocrine dopamine cells may contribute to the dopaminergic inhibition of prolactin secretion diurnally, as their neuromedin S+ inputs originate from neurons expressing Per2 and Per3 and their tyrosine hydroxylase phosphorylation is regulated in a circadian fashion. Overall, our catalog of neuronal subclasses provides new understanding of hypothalamic organization and function.
0

Lhx6Activity Is Required for the Normal Migration and Specification of Cortical Interneuron Subtypes

Petros Liodis et al.Mar 21, 2007
The cerebral cortex contains two main neuronal cell populations, the excitatory glutamatergic (pyramidal) neurons and the inhibitory interneurons, which synthesize GABA and constitute 20–30% of all cortical neurons. In contrast to the mostly homogeneous population of projection neurons, cortical interneurons are characterized by remarkable morphological, molecular, and functional diversity. Among the markers that have been used to classify cortical interneurons are the calcium-binding proteins parvalbumin and calretinin and the neuropeptide somatostatin, which in rodents identify mostly nonoverlapping interneuron subpopulations. Pyramidal neurons are born during embryogenesis in the ventricular zone of the dorsal telencephalon, whereas cortical interneurons are generated in the subpallium and reach the cortex by tangential migration. On completion of tangential migration, cortical interneurons switch to a radial mode of migration and enter the cortical plate. Although the mechanisms that control the generation of interneuron diversity are currently unknown, it has been proposed that their site of origin in the ventral forebrain determines their specification into defined neurochemical subgroups. Here, we show that Lhx6 , a gene induced in the medial ganglionic eminence and maintained in parvalbumin- and somatostatin-positive interneurons, is required for the specification of these neuronal subtypes in the neocortex and the hippocampus. We also show that Lhx6 activity is required for the normal tangential and radial migration of GABAergic interneurons in the cortex.
0

Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes

János Fuzik et al.Dec 21, 2015
Patch-seq reveals new neuronal subtypes by combining electrophysiological and RNA-seq data on single neurons in situ. Traditionally, neuroscientists have defined the identity of neurons by the cells' location, morphology, connectivity and excitability. However, the direct relationship between these parameters and the molecular phenotypes has remained largely unexplored. Here, we present a method for obtaining full transcriptome data from single neocortical pyramidal cells and interneurons after whole-cell patch-clamp recordings in mouse brain slices. In our approach, termed Patch-seq, a patch-clamp stimulus protocol is followed by the aspiration of the entire somatic compartment into the recording pipette, reverse transcription of RNA including addition of unique molecular identifiers, cDNA amplification, Illumina library preparation and sequencing. We show that Patch-seq reveals a close link between electrophysiological characteristics, responses to acute chemical challenges and RNA expression of neurotransmitter receptors and channels. Moreover, it distinguishes neuronal subpopulations that correspond to both well-established and, to our knowledge, hitherto undescribed neuronal subtypes. Our findings demonstrate the ability of Patch-seq to precisely map neuronal subtypes and predict their network contributions in the brain.
0
Citation372
0
Save
0

The External Globus Pallidus as the Hub of the Auditory Cortico-Basal Ganglia Loop

Ryohei Tomioka et al.Nov 1, 2024
The cortico-basal ganglia loop has traditionally been conceptualized as consisting of three distinct information networks: motor, limbic, and associative. However, this three-loop concept is insufficient to comprehensively explain the diverse functions of the cortico-basal ganglia system, as emerging evidence suggests its involvement in sensory processing, including the auditory systems. In the present study, we demonstrate the auditory cortico-basal ganglia loop by using transgenic mice and viral-assisted labelings. The caudal part of the external globus pallidus (GPe) emerged as a major output nucleus of the auditory cortico-basal ganglia loop with the cortico-striato-pallidal projections as its input pathway and pallido-cortical and pallido–thalamo–cortical projections as its output pathway. GABAergic neurons in the caudal GPe dominantly innervated the nonlemniscal auditory pathway. They also projected to various regions, including the substantia nigra pars lateralis, cuneiform nucleus, and periaqueductal gray. Considering the functions associated with these GPe-projecting regions, auditory cortico-basal ganglia circuits may play a pivotal role in eliciting defensive behaviors against acoustic stimuli.