JL
J Ledbetter
Author with expertise in Regulatory T Cell Development and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
1,896
h-index:
55
/
i10-index:
95
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Increases in tyrosine phosphorylation are detectable before phospholipase C activation after T cell receptor stimulation.

C June et al.Mar 1, 1990
Abstract Antiphosphotyrosine immunoblots were used to characterize tyrosine phosphorylated proteins after stimulation of the human TCR. Increased tyrosine phosphorylation was evident on at least 12 substrates within 2 min after ligation of the TCR with mAb. Analysis of the time course for increased tyrosine phosphorylation revealed distinct patterns. Increased phosphorylation of 135-kDa and 100-kDa substrates was evident within 5 s, whereas increased phosphorylation of the TCR-zeta-chain required several minutes after treatment with anti-CD3 mAb. This rapid cellular tyrosine phosphorylation occurred independent of the cell cycle, as it occurred after stimulation of resting T cells, T cell blasts, and the Jurkat T cell leukemia line. When the TCR complex was cross-linked together with the CD4 receptor by heteroconjugate anti-CD3/CD4 mAb, an increased magnitude of tyrosine phosphorylation occurred, although no new substrates could be detected. The increased tyrosine phosphorylation of the 135-kDa and 100-kDa substrates was specific in that anti-HLA class I, anti-CD6, anti-CD7, and anti-CD28 antibodies did not cause increased tyrosine phosphorylation. Anti-CD4 stimulation of resting T cells did not cause increased tyrosine phosphorylation of pp100 and pp135, suggesting that the CD4-associated kinase, lck, does not account for the tyrosine phosphorylation observed after TCR stimulation. Similarly, pharmacologic treatment of cells with phorbol ester and calcium ionophore did not cause increased tyrosine phosphorylation of these substrates, indicating that activation of protein kinase C or phospholipase C does not account for these early increases in tyrosine phosphorylation. The time of onset of pp100 phosphorylation, and the magnitude of phosphorylation correlated with the magnitude of calcium mobilization when cells were stimulated with different forms of TCR stimulation. When cells were labeled with [3H]myoinositol and analyzed after stimulation by anti-CD3 mAb, increased tyrosine phosphorylation of the 135-kDa and 100-kDa substrates preceded the activation of phospholipase C, as measured by the appearance of inositol 1,4,5-trisphosphate. This occurred in both T cell blasts and in the Jurkat T cell line. Thus, these findings show that increased tyrosine phosphorylation is the earliest yet detected signal observed after ligation of the TCR complex, and furthermore suggest that tyrosine phosphorylation might link the TCR to the phosphatidylinositolbisphosphate hydrolysis signaling pathway.
0
Citation432
0
Save
0

gp39-CD40 interactions are essential for germinal center formation and the development of B cell memory.

Teresa Foy et al.Jul 1, 1994
gp39, the ligand for CD40 expressed on activated CD4+ T helper cells, is required for the generation of antibody responses to T-dependent (TD) antigens. Treatment of mice with anti-gp39 in vivo inhibits both primary and secondary antibody formation to TD, but not T-independent antigens. However, the role of this receptor-ligand pair in the development of germinal centers and the generation of B cell memory is as yet undefined. Using an antibody to gp39, this study examines the in vivo requirement for gp39-CD40 interactions in the induction of germinal center formation, as well as in the generation of B cell memory. Animals were immunized, treated in vivo with anti-gp39, and evaluated using immunohistochemical staining for the presence of splenic germinal centers 9-11 d after immunization. The results demonstrate that the formation of germinal centers was completely inhibited as a result of treatment with anti-gp39. Moreover, adoptive transfer experiments demonstrate that the generation of antigen-specific memory B cells is also inhibited as a consequence of blocking gp39-CD40 interactions. Taken together, the data demonstrate that gp39-CD40 interactions are critical not only for the generation of antibody responses, but also in the development of B cell memory.
0
Citation429
0
Save
0

The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD4+ T cells.

Madhuri Roy et al.Sep 1, 1993
Abstract Studies have established that gp39, the ligand for CD40, induces B cell cycle entry and is involved in the initiation of the humoral immune response. Expression of gp39 has been observed on normal, activated CD4+ T cells, activated lymph node cells; an activated Th1 clone, and an activated Th2 clone. Anti-CD3-activated CD8+ T cells did not express gp39; however, CD8+ T cells activated with PMA/ionomycin expressed gp39. The kinetics of anti-CD3-induced gp39 expression on a T cell clone and on splenic CD4+ T cells showed that gp39 was detectable at 4 h after activation, reaching maximal levels between 6 to 8 h postactivation and returning to near resting levels between 24 to 48 h. Lymphokines modulated the expression of gp39 on activated T cells. Expression of gp39 was inhibited by IFN-gamma on activated Th1, Th2, and CD4+ T cells; whereas TGF-beta inhibited gp39 expression only on the Th2 clone studied. All other lymphokines tested were without substantial effect. Differences in the expression of gp39 on activated naive and memory T cells were observed, as well as differences in requirements for optimal gp39 expression on these subsets. There are correlations between gp39 expression and effector function; however, anti-CD3-activated splenic CD4+ cells that express gp39 did not exhibit effector function. A comparison of the relative numbers of molecules of gp39 shows that activated Th1 clones express at least 20-fold the number of gp39 molecules/cell compared with activated splenic CD4+ cells. This may imply that density of gp39 on the activated T cells plays an important role in determining effector function.
0

T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression.

Carl June et al.Dec 1, 1987
CD28 is a homodimeric glycoprotein expressed on the surface of a major subset of human T cells that has recently been identified as a member of the immunoglobulin supergene family. The binding of monoclonal antibodies to the CD28 antigen on purified T cells does not result in proliferation; however, previous studies have shown that the combination of CD28 stimulation and protein kinase C activation by phorbol myristate acetate (PMA) results in T-cell proliferation that is independent of both accessory cells and activation of the T-cell receptor-CD3 complex. In the present study, effects of stimulation by anti-CD28 on cell cycle progression and on the interleukin 2 (IL-2) and IL-2 receptor system have been investigated on primary cultures of purified peripheral-blood CD28+ T cells. There was no measurable effect on cell size or on DNA synthesis after stimulation of resting (G0) cells by CD28 alone. After 3 h of activation of T cells by PMA alone, a slight (8%) increase in cell volume occurred that did not progress to DNA synthesis. In contrast, T-cell stimulation by CD28 in combination with PMA resulted in a progressive increase in cell volume in approximately 100% of cells at 12 to 14 h after stimulation. Northern blot (RNA blot) analysis revealed that CD28 stimulation alone failed to cause expression of the alpha chain of the IL-2 receptor or of IL-2 mRNA, and in accord with previous studies, stimulation by PMA alone resulted in the accumulation of IL-2 receptor transcripts but no detectable IL-2 mRNA. In contrast, T-cell stimulation by the combination of CD28 and PMA resulted in the appearance of IL-2 transcripts and enhanced expression of IL-2 receptor mRNA. Functional studies revealed that the proliferation induced by CD28 and PMA stimulation was entirely resistant to cyclosporine, in contrast to T-cell activation induced by the CD3-T-cell receptor complex. Cyclosporine was found not to affect the accumulation of IL-2 mRNA after CD28 plus PMA stimulation, although there was no detectable IL-2 mRNA after stimulation by CD3 in the presence of the drug. Furthermore, stimulation by CD28 in combination with immobilized CD3 antibodies caused a striking enhancement of IL-2 mRNA expression that was, in part, resistant to the effects of cyclosporine. These studies indicate that the CD28 molecule synergizes with protein kinase C activation to induce IL-2 gene expression and demonstrate that stimulation by the CD28 pathway can cause vigorous T-cell proliferation even in the presence of cyclosporine and that cyclosporine does not prevent transcription of 16-2 mRNA, as has been suggested previously. Moreover, these findings suggest that a potential role for the CD28 molecule in vivo may be to augment IL-2 production after stimulation of the CD3-T-cell receptor molecular complex and thereby to amplify an antigen-specific immune response. Finally, these results provide further evidence that the CD28 molecule triggers T-cell proliferation in a manner that differs biochemically from CD3-T-cell receptor-induced proliferation.