AC
Annahir Cariello
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
1,021
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Decreased Interhemispheric Functional Connectivity in Autism

John Anderson et al.Oct 12, 2010
The cortical underconnectivity theory asserts that reduced long-range functional connectivity might contribute to a neural mechanism for autism. We examined resting-state blood oxygen level–dependent interhemispheric correlation in 53 males with high-functioning autism and 39 typically developing males from late childhood through early adulthood. By constructing spatial maps of correlation between homologous voxels in each hemisphere, we found significantly reduced interhemispheric correlation specific to regions with functional relevance to autism: sensorimotor cortex, anterior insula, fusiform gyrus, superior temporal gyrus, and superior parietal lobule. Observed interhemispheric connectivity differences were better explained by diagnosis of autism than by potentially confounding neuropsychological metrics of language, IQ, or handedness. Although both corpus callosal volume and gray matter interhemispheric connectivity were significantly reduced in autism, no direct relationship was observed between them, suggesting that structural and functional metrics measure different aspects of interhemispheric connectivity. In the control but not the autism sample, there was decreasing interhemispheric correlation with subject age. Greater differences in interhemispheric correlation were seen for more lateral regions in the brain. These findings suggest that long-range connectivity abnormalities in autism are spatially heterogeneous and that transcallosal connectivity is decreased most in regions with functions associated with behavioral abnormalities in autism. Autism subjects continue to show developmental differences in interhemispheric connectivity into early adulthood.
0

Functional connectivity magnetic resonance imaging classification of autism

Jeffrey Anderson et al.Oct 17, 2011
Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear whether functional connectivity is sufficiently robust to be used as a diagnostic or prognostic metric in individual patients with autism. We obtained pairwise functional connectivity measurements from a lattice of 7266 regions of interest covering the entire grey matter (26.4 million connections) in a well-characterized set of 40 male adolescents and young adults with autism and 40 age-, sex- and IQ-matched typically developing subjects. A single resting state blood oxygen level-dependent scan of 8 min was used for the classification in each subject. A leave-one-out classifier successfully distinguished autism from control subjects with 83% sensitivity and 75% specificity for a total accuracy of 79% (P = 1.1 × 10−7). In subjects <20 years of age, the classifier performed at 89% accuracy (P = 5.4 × 10−7). In a replication dataset consisting of 21 individuals from six families with both affected and unaffected siblings, the classifier performed at 71% accuracy (91% accuracy for subjects <20 years of age). Classification scores in subjects with autism were significantly correlated with the Social Responsiveness Scale (P = 0.05), verbal IQ (P = 0.02) and the Autism Diagnostic Observation Schedule-Generic's combined social and communication subscores (P = 0.05). An analysis of informative connections demonstrated that region of interest pairs with strongest correlation values were most abnormal in autism. Negatively correlated region of interest pairs showed higher correlation in autism (less anticorrelation), possibly representing weaker inhibitory connections, particularly for long connections (Euclidean distance >10 cm). Brain regions showing greatest differences included regions of the default mode network, superior parietal lobule, fusiform gyrus and anterior insula. Overall, classification accuracy was better for younger subjects, with differences between autism and control subjects diminishing after 19 years of age. Classification scores of unaffected siblings of individuals with autism were more similar to those of the control subjects than to those of the subjects with autism. These findings indicate feasibility of a functional connectivity magnetic resonance imaging diagnostic assay for autism.
0

Longitudinal Volumetric Brain Changes in Autism Spectrum Disorder Ages 6–35 Years

Nicholas Lange et al.Nov 7, 2014
Since the impairments associated with autism spectrum disorder (ASD) tend to persist or worsen from childhood into adulthood, it is of critical importance to examine how the brain develops over this growth epoch. We report initial findings on whole and regional longitudinal brain development in 100 male participants with ASD (226 high-quality magnetic resonance imaging [MRI] scans; mean inter-scan interval 2.7 years) compared to 56 typically developing controls (TDCs) (117 high-quality scans; mean inter-scan interval 2.6 years) from childhood into adulthood, for a total of 156 participants scanned over an 8-year period. This initial analysis includes between one and three high-quality scans per participant that have been processed and segmented to date, with 21% having one scan, 27% with two scans, and 52% with three scans in the ASD sample; corresponding percentages for the TDC sample are 30%, 30%, and 40%. The proportion of participants with multiple scans (79% of ASDs and 68% of TDCs) was high in comparison to that of large longitudinal neuroimaging studies of typical development. We provide volumetric growth curves for the entire brain, total gray matter (GM), frontal GM, temporal GM, parietal GM, occipital GM, total cortical white matter (WM), corpus callosum, caudate, thalamus, total cerebellum, and total ventricles. Mean volume of cortical WM was reduced significantly. Mean ventricular volume was increased in the ASD sample relative to the TDCs across the broad age range studied. Decreases in regional mean volumes in the ASD sample most often were due to decreases during late adolescence and adulthood. The growth curve of whole brain volume over time showed increased volumes in young children with autism, and subsequently decreased during adolescence to meet the TDC curve between 10 and 15 years of age. The volume of many structures continued to decline atypically into adulthood in the ASD sample. The data suggest that ASD is a dynamic disorder with complex changes in whole and regional brain volumes that change over time from childhood into adulthood.
0
Citation209
0
Save