MP
Michael Pacold
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(100% Open Access)
Cited by:
2,721
h-index:
28
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate

Michael Pacold et al.Apr 25, 2016
A quantitative high-throughput screen identified an inhibitor of phosphoglycerate dehydrogenase (PHGDH), a key enzyme for serine synthesis. This inhibitor limits one-carbon unit availability for nucleotide synthesis. Serine is both a proteinogenic amino acid and the source of one-carbon units essential for de novo purine and deoxythymidine synthesis. In the canonical pathway of glucose-derived serine synthesis, Homo sapiens phosphoglycerate dehydrogenase (PHGDH) catalyzes the first, rate-limiting step. Genetic loss of PHGDH is toxic toward PHGDH-overexpressing breast cancer cell lines even in the presence of exogenous serine. Here, we used a quantitative high-throughput screen to identify small-molecule PHGDH inhibitors. These compounds reduce the production of glucose-derived serine in cells and suppress the growth of PHGDH-dependent cancer cells in culture and in orthotopic xenograft tumors. Surprisingly, PHGDH inhibition reduced the incorporation into nucleotides of one-carbon units from glucose-derived and exogenous serine. We conclude that glycolytic serine synthesis coordinates the use of one-carbon units from endogenous and exogenous serine in nucleotide synthesis, and we suggest that one-carbon unit wasting thus may contribute to the efficacy of PHGDH inhibitors in vitro and in vivo.
0
Citation436
0
Save
0

Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway

Robert Saxton et al.Dec 31, 2015
From sensing leucine to metabolic control The mTORC1 protein kinase complex plays central roles in regulating cell growth and metabolism and is implicated in common human diseases such as diabetes and cancer. The level of the amino acid leucine tells an organism a lot about its physiological state, including how much food is available, how much insulin is going to be needed, and whether new muscle mass can be made (see the Perspective by Buel and Blenis). Wolfson et al. identified a biochemical sensor of leucine, Sestrin2, which connects the concentration of leucine to the control of organismal metabolism and growth. When leucine bound to Sestrin2, it was released from a complex with the mTORC1 regulatory factor GATOR2, activating the mTORC1 complex. Saxton et al. describe the crystal structure of Sestrin2 and show how it specifically detects leucine. Aylett et al. determined the structure of human mTORC1 by cryoelectron microscopy and the crystal structure of a regulatory subunit, Raptor. The results reveal the structural basis for the function and intricate regulation of this important enzyme, which is also a strategic drug target. Science , this issue p. 43 , p. 48 , p. 53 ; see also p. 25
0

SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance

Do‐Hoon Kim et al.Apr 1, 2015
Tumours are a low-oxygen environment, in this study glioblastoma cells are found to overexpress the serine hydroxymethyltransferase SHMT2; SHMT acts to reduce oxygen consumption, which confers the tumour cells with a survival advantage. Tumour cells thrive in a low-oxygen environment, and in this study David Sabatini and colleagues demonstrate a mechanism that operates in the ischaemic zone of glioblastoma cells to give tumour cells a survival advantage. Glioblastoma cells are shown to overexpress the serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC). SHMT2 favours poorly vascularized tumour cells by reducing oxygen consumption but at the same time it exposes a selective vulnerability. Glycine, the product of SHMT2 activity, if allowed to accumulate in excess within the cell can be converted into toxic molecules, hence it may be possible to target tumorigenic glioblastoma cells by inhibiting GLDC. Cancer cells adapt their metabolic processes to support rapid proliferation, but less is known about how cancer cells alter metabolism to promote cell survival in a poorly vascularized tumour microenvironment1,2,3. Here we identify a key role for serine and glycine metabolism in the survival of brain cancer cells within the ischaemic zones of gliomas. In human glioblastoma multiforme, mitochondrial serine hydroxymethyltransferase (SHMT2) and glycine decarboxylase (GLDC) are highly expressed in the pseudopalisading cells that surround necrotic foci. We find that SHMT2 activity limits that of pyruvate kinase (PKM2) and reduces oxygen consumption, eliciting a metabolic state that confers a profound survival advantage to cells in poorly vascularized tumour regions. GLDC inhibition impairs cells with high SHMT2 levels as the excess glycine not metabolized by GLDC can be converted to the toxic molecules aminoacetone and methylglyoxal. Thus, SHMT2 is required for cancer cells to adapt to the tumour environment, but also renders these cells sensitive to glycine cleavage system inhibition.
0
Citation313
0
Save
0

Limited Environmental Serine and Glycine Confer Brain Metastasis Sensitivity to PHGDH Inhibition

Bryan Ngo et al.Jun 22, 2020
Abstract A hallmark of metastasis is the adaptation of tumor cells to new environments. Metabolic constraints imposed by the serine and glycine–limited brain environment restrict metastatic tumor growth. How brain metastases overcome these growth-prohibitive conditions is poorly understood. Here, we demonstrate that 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of glucose-derived serine synthesis, is a major determinant of brain metastasis in multiple human cancer types and preclinical models. Enhanced serine synthesis proved important for nucleotide production and cell proliferation in highly aggressive brain metastatic cells. In vivo, genetic suppression and pharmacologic inhibition of PHGDH attenuated brain metastasis, but not extracranial tumor growth, and improved overall survival in mice. These results reveal that extracellular amino acid availability determines serine synthesis pathway dependence, and suggest that PHGDH inhibitors may be useful in the treatment of brain metastasis. Significance: Using proteomics, metabolomics, and multiple brain metastasis models, we demonstrate that the nutrient-limited environment of the brain potentiates brain metastasis susceptibility to serine synthesis inhibition. These findings underscore the importance of studying cancer metabolism in physiologically relevant contexts, and provide a rationale for using PHGDH inhibitors to treat brain metastasis. This article is highlighted in the In This Issue feature, p. 1241