NS
Nicholas Schaum
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
1,197
h-index:
0
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
89

A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk

Andrew Yang et al.Feb 14, 2022
The human brain vasculature is of great medical importance: its dysfunction causes disability and death1, and the specialized structure it forms—the blood–brain barrier—impedes the treatment of nearly all brain disorders2,3. Yet so far, we have no molecular map of the human brain vasculature. Here we develop vessel isolation and nuclei extraction for sequencing (VINE-seq) to profile the major vascular and perivascular cell types of the human brain through 143,793 single-nucleus transcriptomes from 25 hippocampus and cortex samples of 9 individuals with Alzheimer’s disease and 8 individuals with no cognitive impairment. We identify brain-region- and species-enriched genes and pathways. We reveal molecular principles of human arteriovenous organization, recapitulating a gradual endothelial and punctuated mural cell continuum. We discover two subtypes of human pericytes, marked by solute transport and extracellular matrix (ECM) organization; and define perivascular versus meningeal fibroblast specialization. In Alzheimer’s disease, we observe selective vulnerability of ECM-maintaining pericytes and gene expression patterns that implicate dysregulated blood flow. With an expanded survey of brain cell types, we find that 30 of the top 45 genes that have been linked to Alzheimer’s disease risk by genome-wide association studies (GWASs) are expressed in the human brain vasculature, and we confirm this by immunostaining. Vascular GWAS genes map to endothelial protein transport, adaptive immune and ECM pathways. Many are microglia-specific in mice, suggesting a partial evolutionary transfer of Alzheimer’s disease risk. Our work uncovers the molecular basis of the human brain vasculature, which will inform our understanding of overall brain health, disease and therapy. A method called vessel isolation and nuclei extraction for sequencing (VINE-seq) produces a molecular map of vascular and perivascular cell types in the human brain and reveals their contributions to Alzheimer’s disease risk.
89
Citation418
0
Save
0

Ageing hallmarks exhibit organ-specific temporal signatures

Nicholas Schaum et al.Jul 15, 2020
Ageing is the single greatest cause of disease and death worldwide, and understanding the associated processes could vastly improve quality of life. Although major categories of ageing damage have been identified—such as altered intercellular communication, loss of proteostasis and eroded mitochondrial function1—these deleterious processes interact with extraordinary complexity within and between organs, and a comprehensive, whole-organism analysis of ageing dynamics has been lacking. Here we performed bulk RNA sequencing of 17 organs and plasma proteomics at 10 ages across the lifespan of Mus musculus, and integrated these findings with data from the accompanying Tabula Muris Senis2—or ‘Mouse Ageing Cell Atlas’—which follows on from the original Tabula Muris3. We reveal linear and nonlinear shifts in gene expression during ageing, with the associated genes clustered in consistent trajectory groups with coherent biological functions—including extracellular matrix regulation, unfolded protein binding, mitochondrial function, and inflammatory and immune response. Notably, these gene sets show similar expression across tissues, differing only in the amplitude and the age of onset of expression. Widespread activation of immune cells is especially pronounced, and is first detectable in white adipose depots during middle age. Single-cell RNA sequencing confirms the accumulation of T cells and B cells in adipose tissue—including plasma cells that express immunoglobulin J—which also accrue concurrently across diverse organs. Finally, we show how gene expression shifts in distinct tissues are highly correlated with corresponding protein levels in plasma, thus potentially contributing to the ageing of the systemic circulation. Together, these data demonstrate a similar yet asynchronous inter- and intra-organ progression of ageing, providing a foundation from which to track systemic sources of declining health at old age. Bulk RNA sequencing of organs and plasma proteomics at different ages across the mouse lifespan is integrated with data from the Tabula Muris Senis, a transcriptomic atlas of ageing mouse tissues, to describe organ-specific changes in gene expression during ageing.
0
Citation406
0
Save
0

p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes

Albert Davalos et al.May 6, 2013
Cellular senescence irreversibly arrests proliferation in response to potentially oncogenic stress. Senescent cells also secrete inflammatory cytokines such as IL-6, which promote age-associated inflammation and pathology. HMGB1 (high mobility group box 1) modulates gene expression in the nucleus, but certain immune cells secrete HMGB1 as an extracellular Alarmin to signal tissue damage. We show that nuclear HMGB1 relocalized to the extracellular milieu in senescent human and mouse cells in culture and in vivo. In contrast to cytokine secretion, HMGB1 redistribution required the p53 tumor suppressor, but not its activator ATM. Moreover, altered HMGB1 expression induced a p53-dependent senescent growth arrest. Senescent fibroblasts secreted oxidized HMGB1, which stimulated cytokine secretion through TLR-4 signaling. HMGB1 depletion, HMGB1 blocking antibody, or TLR-4 inhibition attenuated senescence-associated IL-6 secretion, and exogenous HMGB1 stimulated NF-κB activity and restored IL-6 secretion to HMGB1-depleted cells. Our findings identify senescence as a novel biological setting in which HMGB1 functions and link HMGB1 redistribution to p53 activity and senescence-associated inflammation.