JK
Joon‐Kyung Kim
Author with expertise in Deep Learning in Computer Vision and Image Recognition
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(0% Open Access)
Cited by:
1,025
h-index:
16
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Bit Fusion: Bit-Level Dynamically Composable Architecture for Accelerating Deep Neural Network

Hardik Sharma et al.Jun 1, 2018
Hardware acceleration of Deep Neural Networks (DNNs) aims to tame their enormous compute intensity. Fully realizing the potential of acceleration in this domain requires understanding and leveraging algorithmic properties of DNNs. This paper builds upon the algorithmic insight that bitwidth of operations in DNNs can be reduced without compromising their classification accuracy. However, to prevent loss of accuracy, the bitwidth varies significantly across DNNs and it may even be adjusted for each layer individually. Thus, a fixed-bitwidth accelerator would either offer limited benefits to accommodate the worst-case bitwidth requirements, or inevitably lead to a degradation in final accuracy. To alleviate these deficiencies, this work introduces dynamic bit-level fusion/decomposition as a new dimension in the design of DNN accelerators. We explore this dimension by designing Bit Fusion, a bit-flexible accelerator, that constitutes an array of bit-level processing elements that dynamically fuse to match the bitwidth of individual DNN layers. This flexibility in the architecture enables minimizing the computation and the communication at the finest granularity possible with no loss in accuracy. We evaluate the benefits of Bit Fusion using eight real-world feed-forward and recurrent DNNs. The proposed microarchitecture is implemented in Verilog and synthesized in 45 nm technology. Using the synthesis results and cycle accurate simulation, we compare the benefits of Bit Fusion to two state-of-the-art DNN accelerators, Eyeriss and Stripes. In the same area, frequency, and process technology, Bit Fusion offers 3.9x speedup and 5.1x energy savings over Eyeriss. Compared to Stripes, Bit Fusion provides 2.6x speedup and 3.9x energy reduction at 45 nm node when Bit Fusion area and frequency are set to those of Stripes. Scaling to GPU technology node of 16 nm, Bit Fusion almost matches the performance of a 250-Watt Titan Xp, which uses 8-bit vector instructions, while Bit Fusion merely consumes 895 milliwatts of power.
0

From high-level deep neural models to FPGAs

Hardik Sharma et al.Oct 1, 2016
Deep Neural Networks (DNNs) are compute-intensive learning models with growing applicability in a wide range of domains. FPGAs are an attractive choice for DNNs since they offer a programmable substrate for acceleration and are becoming available across different market segments. However, obtaining both performance and energy efficiency with FPGAs is a laborious task even for expert hardware designers. Furthermore, the large memory footprint of DNNs, coupled with the FPGAs' limited on-chip storage makes DNN acceleration using FPGAs more challenging. This work tackles these challenges by devising DnnWeaver, a framework that automatically generates a synthesizable accelerator for a given (DNN, FPGA) pair from a high-level specification in Caffe [1]. To achieve large benefits while preserving automation, DNNWEAVER generates accelerators using hand-optimized design templates. First, DnnWeaver translates a given high-level DNN specification to its novel ISA that represents a macro dataflow graph of the DNN. The DnnWeaver compiler is equipped with our optimization algorithm that tiles, schedules, and batches DNN operations to maximize data reuse and best utilize target FPGA's memory and other resources. The final result is a custom synthesizable accelerator that best matches the needs of the DNN while providing high performance and efficiency gains for the target FPGA. We use DnnWeaver to generate accelerators for a set of eight different DNN models and three different FPGAs, Xilinx Zynq, Altera Stratix V, and Altera Arria 10. We use hardware measurements to compare the generated accelerators to both multicore CPUs (ARM Cortex A15 and Xeon E3) and many-core GPUs (Tegra K1, GTX 650Ti, and Tesla K40). In comparison, the generated accelerators deliver superior performance and efficiency without requiring the programmers to participate in the arduous task of hardware design.
0

From high-level deep neural models to FPGAs

Hardik Sharma et al.Oct 15, 2016
Deep Neural Networks (DNNs) are compute-intensive learning models with growing applicability in a wide range of domains. FPGAs are an attractive choice for DNNs since they offer a programmable substrate for acceleration and are becoming available across different market segments. However, obtaining both performance and energy efficiency with FPGAs is a laborious task even for expert hardware designers. Furthermore, the large memory footprint of DNNs, coupled with the FPGAs' limited on-chip storage makes DNN acceleration using FPGAs more challenging. This work tackles these challenges by devising DnnWeaver, a framework that automatically generates a synthesizable accelerator for a given (DNN, FPGA) pair from a high-level specification in Caffe [1]. To achieve large benefits while preserving automation, DNNWEAVER generates accelerators using hand-optimized design templates. First, DnnWeaver translates a given high-level DNN specification to its novel ISA that represents a macro dataflow graph of the DNN. The DnnWeaver compiler is equipped with our optimization algorithm that tiles, schedules, and batches DNN operations to maximize data reuse and best utilize target FPGA's memory and other resources. The final result is a custom synthesizable accelerator that best matches the needs of the DNN while providing high performance and efficiency gains for the target FPGA. We use DnnWeaver to generate accelerators for a set of eight different DNN models and three different FPGAs, Xilinx Zynq, Altera Stratix V, and Altera Arria 10. We use hardware measurements to compare the generated accelerators to both multicore CPUs (ARM Cortex A15 and Xeon E3) and many-core GPUs (Tegra K1, GTX 650Ti, and Tesla K40). In comparison, the generated accelerators deliver superior performance and efficiency without requiring the programmers to participate in the arduous task of hardware design.