AK
Anton Kirch
Author with expertise in Perovskite Solar Cell Technology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
0
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Sensitive Self‐Driven Single‐Component Organic Photodetector Based on Vapor‐Deposited Small Molecules

Jakob Wolansky et al.Nov 6, 2024
Abstract Typically, organic solar cells (OSCs) and photodetectors (OPDs) comprise an electron donating and accepting material to facilitate efficient charge carrier generation. This approach has proven successful in achieving high‐performance devices but has several drawbacks for upscaling and stability. This study presents a fully vacuum‐deposited single‐component OPD, employing the neat oligothiophene derivative DCV2‐5T in the photoactive layer. Free charge carriers are generated with an internal quantum efficiency of 20 % at zero bias. By optimizing the device structure, a very low dark current of 3.4 · 10 −11 A cm −2 at −0.1 V is achieved, comparable to the dark current of state‐of‐the‐art bulk heterojunction OPDs. This optimization results in specific detectivities of 1· 10 13 Jones (based on noise measurements), accompanied by a fast photoresponse ( f ‐3dB = 200 kHz) and a broad linear dynamic range (> 150 dB). Ultrafast transient absorption spectroscopy unveils that charge carriers are already formed at very short time scales (< 1 ps). The surprisingly efficient bulk charge generation mechanism is attributed to a strong electronic coupling of the molecular exciton and charge transfer states. This work demonstrates the very high performance of single‐component OPDs and proves that this novel device design is a successful strategy for highly efficient, morphological stable and easily manufacturable devices.
0

Tuning Charge-Transfer States by Interface Electric Fields

Anton Kirch et al.Jun 6, 2024
Intermolecular charge-transfer (CT) states are extended excitons with a charge separation on the nanometer scale. Through absorption and emission processes, they couple to the ground state. This property is employed both in light-emitting and light-absorbing devices. Their conception often relies on donor–acceptor (D–A) interfaces, so-called type-II heterojunctions, which usually generate significant electric fields. Several recent studies claim that these fields alter the energetic configuration of the CT states at the interface, an idea holding prospects like multicolor emission from a single emissive interface or shifting the absorption characteristics of a photodetector. Here, we test this hypothesis and contribute to the discussion by presenting a new model system. Through the fabrication of planar organic p-(i-)n junctions, we generate an ensemble of oriented CT states that allows the systematic assessment of electric field impacts. By increasing the thickness of the intrinsic layer at the D–A interface from 0 to 20 nm and by applying external voltages up to 6 V, we realize two different scenarios that controllably tune the intrinsic and extrinsic electric interface fields. By this, we obtain significant shifts of the CT-state peak emission of about 0.5 eV (170 nm from red to green color) from the same D–A material combination. This effect can be explained in a classical electrostatic picture, as the interface electric field alters the potential energy of the electric CT-state dipole. This study illustrates that CT-state energies can be tuned significantly if their electric dipoles are aligned to the interface electric field.
0

Impact of the Electrode Material on the Performance of Light-Emitting Electrochemical Cells

Anton Kirch et al.Jan 10, 2025
Light-emitting electrochemical cells (LECs) are promising candidates for fully solution-processed lighting applications because they can comprise a single active-material layer and air-stable electrodes. While their performance is often claimed to be independent of the electrode material selection due to the in situ formation of electric double layers (EDLs), we demonstrate conceptually and experimentally that this understanding needs to be modified. Specifically, the exciton generation zone is observed to be affected by the electrode work function. We rationalize this finding by proposing that the ion concentration in the injection-facilitating EDLs depends on the offset between the electrode work function and the respective semiconductor orbital, which in turn influences the number of ions available for electrochemical doping and hence shifts the exciton generation zone. Further, we investigate the effects of the electrode selection on exciton losses to surface plasmon polaritons and discuss the impact of cavity effects on the exciton density. We conclude by showing that we can replicate the measured luminance transients by an optical model which considers these electrode-dependent effects. As such, our findings provide rational design criteria considering the electrode materials, the active-material thickness, and its composition in concert to achieve optimum LEC performance.