HC
Hongyi Chen
Author with expertise in Thermoelectric Materials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(22% Open Access)
Cited by:
1,577
h-index:
31
/
i10-index:
57
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Entropy as a Gene‐Like Performance Indicator Promoting Thermoelectric Materials

Ruiheng Liu et al.Aug 18, 2017
High‐throughput explorations of novel thermoelectric materials based on the Materials Genome Initiative paradigm only focus on digging into the structure‐property space using nonglobal indicators to design materials with tunable electrical and thermal transport properties. As the genomic units, following the biogene tradition, such indicators include localized crystal structural blocks in real space or band degeneracy at certain points in reciprocal space. However, this nonglobal approach does not consider how real materials differentiate from others. Here, this study successfully develops a strategy of using entropy as the global gene‐like performance indicator that shows how multicomponent thermoelectric materials with high entropy can be designed via a high‐throughput screening method. Optimizing entropy works as an effective guide to greatly improve the thermoelectric performance through either a significantly depressed lattice thermal conductivity down to its theoretical minimum value and/or via enhancing the crystal structure symmetry to yield large Seebeck coefficients. The entropy engineering using multicomponent crystal structures or other possible techniques provides a new avenue for an improvement of the thermoelectric performance beyond the current methods and approaches.
0

Fundamental understanding of voltage decay in Li-rich Mn-based layered oxides cathode materials

Huixian Xie et al.Nov 25, 2024
Abstract To satisfy the needs of modern intelligent society for power supplies with long-endurance ability, Li-rich Mn-based layered oxides (LRMOs) are receiving much attention because of their ultrahigh capacity. However, their real-world implementation is hindered by the serious voltage decay, which results in a continuous decrease in energy density. The understanding on voltage decay still remains a mystery due to the complicated hybrid cationic-anionic redox and the serious surface-interface reactions in LRMOs. Moreover, some of the mechanisms are occasionally contradictory, indicating that the origin of voltage decay is still unclear. As a result, none of the innovative strategies proposed on the basis of mechanisms has effectively alleviated the problem of voltage decay, and voltage decay becomes a long-term distress of LRMOs. Therefore, it is particularly crucial to sort out the mutual relation of various mechanisms, which helps to go back to the source of voltage decay. In this review, we summarize the current mechanisms of voltage decay as structural evolution and oxygen chemistry, and attempt to trace the origin of voltage decay for LRMOs. In addition, we discuss how current researches address the issue with generalized guidance in designing appropriate strategies based on mechanisms.