MK
M. Krips
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
1,536
h-index:
51
/
i10-index:
108
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS INz= 1.5 DISK GALAXIES

E. Daddi et al.Mar 24, 2010
We present evidence for very high gas fractions and extended molecular gas reservoirs in normal, near-infrared selected (BzK) galaxies at z~1.5, based on multi-configuration CO[2-1] observations obtained at the IRAM PdBI. Six of the six galaxies observed were securely detected. High resolution observations resolve the CO emission in four of them, implying sizes of order of 6-11 kpc and suggesting the presence of rotation. The UV morphologies are consistent with clumpy, unstable disks, and the UV sizes are consistent with the CO sizes. The star formation efficiencies are homogeneously low and similar to local spirals - the resulting gas depletion times are ~0.5 Gyr, much higher than what is seen in high-z submm galaxies and quasars. The CO luminosities can be predicted to within 0.15 dex from the star formation rates and stellar masses, implying a tight correlation of the gas mass with these quantities. We use dynamical models of clumpy disk galaxies to derive dynamical masses. These models are able to reproduce the peculiar spectral line shapes of the CO emission. After accounting for the stellar and dark matter masses we derive gas masses of 0.4-1.2x10^11 Msun. The conversion factor is very high: alpha_CO=3.6+-0.8, consistent with the Galaxy but four times higher than that of local ultra-luminous IR galaxies. The gas accounts for an impressive 50-65% of the baryons within the galaxies' half light radii. We are witnessing truly gas-dominated galaxies at z~1.5, a finding that explains the high specific SFRs observed for z>1 galaxies. The BzK galaxies can be viewed as scaled-up versions of local disk galaxies, with low efficiency star formation taking place inside extended, low excitation gas disks. They are markedly different than local ULIRGs and high-z submm galaxies, which have more excited and compact gas.
1

Intense star formation within resolved compact regions in a galaxy at z = 2.3

A. Swinbank et al.Mar 21, 2010
Massive galaxies in the early Universe have been shown to be forming stars at surprisingly high rates. Prominent examples are dust-obscured galaxies which are luminous when observed at sub-millimeter (sub-mm) wavelengths and which may be forming stars at rates upto 1,000Mo/yr. These intense bursts of star formation are believed to be driven by mergers between gas rich galaxies. However, probing the properties of individual star-forming regions within these galaxies is beyond the spatial resolution and sensitivity of even the largest telescopes at present. Here, we report observations of the sub-mm galaxy SMMJ2135-0102 at redshift z=2.3259 which has been gravitationally magnified by a factor of 32 by a massive foreground galaxy cluster lens. This cosmic magnification, when combined with high-resolution sub-mm imaging, resolves the star-forming regions at a linear scale of just ~100 parsecs. We find that the luminosity densities of these star-forming regions are comparable to the dense cores of giant molecular clouds in the local Universe, but they are ~100x larger and 10^7 times more luminous. Although vigorously star-forming, the underlying physics of the star formation processes at z~2 appears to be similar to that seen in local galaxies even though the energetics are unlike anything found in the present-day Universe.
0

THE INTERSTELLAR MEDIUM IN DISTANT STAR-FORMING GALAXIES: TURBULENT PRESSURE, FRAGMENTATION, AND CLOUD SCALING RELATIONS IN A DENSE GAS DISK ATz= 2.3

A. Swinbank et al.Nov 1, 2011
We have used the Institut de Radioastronomie Millimétrique (IRAM) Plateau de Bure Interferometer and the Expanded Very Large Array to obtain a high-resolution map of the CO(6–5) and CO(1–0) emission in the lensed, star-forming galaxy SMM J2135−0102 at z = 2.32. The kinematics of the gas are well described by a model of a rotationally supported disk with an inclination-corrected rotation speed, vrot = 320 ± 25 km s−1, a ratio of rotational-to-dispersion support of v/σ = 3.5 ± 0.2, and a dynamical mass of (6.0 ± 0.5) × 1010 M☉ within a radius of 2.5 kpc. The disk has a Toomre parameter, Q = 0.50 ± 0.15, suggesting that the gas will rapidly fragment into massive clumps on scales of LJ ∼ 400 pc. We identify star-forming regions on these scales and show that they are ∼10 × denser than those in quiescent environments in local galaxies, and significantly offset from the local molecular cloud scaling relations (Larson's relations). The large offset compared to local molecular cloud line-width–size scaling relations implies that supersonic turbulence should remain dominant on scales ∼100× smaller than in the kinematically quiescent interstellar medium (ISM) of the Milky Way, while the molecular gas in SMM J2135 is expected to be ∼50× denser than that in the Milky Way on all scales. This is most likely due to the high external hydrostatic pressure we measure for the ISM, Ptot/kB ∼ (2 ± 1) × 107 K cm−3. In such highly turbulent ISM, the subsonic regions of gravitational collapse (and star formation) will be characterized by much higher critical densities, ncrit > = 108 cm−3, a factor ≳1000× more than the quiescent ISM of the Milky Way.
0

ALMA RESOLVES THE TORUS OF NGC 1068: CONTINUUM AND MOLECULAR LINE EMISSION

S. García-Burillo et al.May 16, 2016
We have used the Atacama Large Millimeter Array (ALMA) to map the emission of the CO(6-5) molecular line and the 432 {\mu}m continuum emission from the 300 pc-sized circumnuclear disk (CND) of the nearby Seyfert 2 galaxy NGC 1068 with a spatial resolution of ~4 pc. These observations spatially resolve the CND and, for the first time, image the dust emission, the molecular gas distribution, and the kinematics from a 7-10 pc-diameter disk that represents the submillimeter counterpart of the putative torus of NGC 1068. We fitted the nuclear spectral energy distribution of the torus using ALMA and near and mid-infrared (NIR/MIR) data with CLUMPY models. The mass and radius of the best-fit solution for the torus are both consistent with the values derived from the ALMA data alone: Mgas_torus=(1+-0.3)x10^5 Msun and Rtorus=3.5+-0.5 pc. The dynamics of the molecular gas in the torus show non-circular motions and enhanced turbulence superposed on the rotating pattern of the disk. The kinematic major axis of the CO torus is tilted relative to its morphological major axis. By contrast with the nearly edge-on orientation of the H2O megamaser disk, we have found evidence suggesting that the molecular torus is less inclined (i=34deg-66deg) at larger radii. The lopsided morphology and complex kinematics of the torus could be the signature of the Papaloizou-Pringle instability, long predicted to likely drive the dynamical evolution of active galactic nuclei (AGN) tori.