SL
Seung-Oe Lim
Author with expertise in Glycosylation in Health and Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
2,484
h-index:
21
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Epigenetic Changes Induced by Reactive Oxygen Species in Hepatocellular Carcinoma: Methylation of the E-cadherin Promoter

Seung-Oe Lim et al.Aug 1, 2008
Background & AimsIn addition to genetic alterations, epigenetic changes underlie tumor progression and metastasis. Promoter methylation can silence tumor suppressor genes, and reactive oxygen species (ROS) promote DNA damage, although the relationship between ROS and epigenetic changes in cancer cells is not clear. We sought to determine whether ROS promote hypermethylation of the promoter region of E-cadherin, a regulator of the epithelial-to-mesenchymal transition, in hepatocellular carcinoma (HCC) cells.MethodsHCC cells were exposed to H2O2 or stably transfected to express Snail, a transcription factor that down-regulates E-cadherin expression. E-cadherin and Snail expression levels were examined by real-time reverse-transcriptase polymerase chain reaction and immunoblot analyses. The methylation status of E-cadherin was examined by methyl-specific polymerase chain reaction, bisulfite sequencing, and chromatin immunoprecipitation. The interactions between Snail, histone deacetylase 1, and DNA methyltransferase 1 were assessed by immunoprecipitation/immunoblot and immunofluorescence analyses. ROS-induced stress, E-cadherin expression, Snail expression, and E-cadherin promoter methylation were confirmed in HCC tissues by immunoblot, immunohistochemistry, and methyl-specific polymerase chain reaction analyses.ResultsWe demonstrated that ROS induce hypermethylation of the E-cadherin promoter by increasing Snail expression. Snail induced DNA methylation of the E-cadherin promoter by recruiting histone deacetylase 1 and DNA methyltransferase 1. In human HCC tissues, we observed a correlation among ROS induction, E-cadherin down-regulation, Snail up-regulation, and E-cadherin promoter methylation.ConclusionsThese findings provide novel mechanistic insights into epigenetic modulations induced by ROS in the process of carcinogenesis. They are potentially relevant to understanding the activity of ROS in silencing various tumor suppressor genes and in subsequent tumor progression and metastasis. In addition to genetic alterations, epigenetic changes underlie tumor progression and metastasis. Promoter methylation can silence tumor suppressor genes, and reactive oxygen species (ROS) promote DNA damage, although the relationship between ROS and epigenetic changes in cancer cells is not clear. We sought to determine whether ROS promote hypermethylation of the promoter region of E-cadherin, a regulator of the epithelial-to-mesenchymal transition, in hepatocellular carcinoma (HCC) cells. HCC cells were exposed to H2O2 or stably transfected to express Snail, a transcription factor that down-regulates E-cadherin expression. E-cadherin and Snail expression levels were examined by real-time reverse-transcriptase polymerase chain reaction and immunoblot analyses. The methylation status of E-cadherin was examined by methyl-specific polymerase chain reaction, bisulfite sequencing, and chromatin immunoprecipitation. The interactions between Snail, histone deacetylase 1, and DNA methyltransferase 1 were assessed by immunoprecipitation/immunoblot and immunofluorescence analyses. ROS-induced stress, E-cadherin expression, Snail expression, and E-cadherin promoter methylation were confirmed in HCC tissues by immunoblot, immunohistochemistry, and methyl-specific polymerase chain reaction analyses. We demonstrated that ROS induce hypermethylation of the E-cadherin promoter by increasing Snail expression. Snail induced DNA methylation of the E-cadherin promoter by recruiting histone deacetylase 1 and DNA methyltransferase 1. In human HCC tissues, we observed a correlation among ROS induction, E-cadherin down-regulation, Snail up-regulation, and E-cadherin promoter methylation. These findings provide novel mechanistic insights into epigenetic modulations induced by ROS in the process of carcinogenesis. They are potentially relevant to understanding the activity of ROS in silencing various tumor suppressor genes and in subsequent tumor progression and metastasis.
0
Citation363
0
Save
0

EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2

Jia Shen et al.May 1, 2013
Epidermal growth factor receptor, the product of a human oncogene, suppresses the maturation of specific tumour-suppressor-like microRNAs in response to hypoxic stress through phosphorylation of argonaute 2. MicroRNA-mediated regulation of gene expression occurs during response to stresses such as hypoxia, a condition found in the centre of a solid tumour. Mien-Chie Hung and colleagues show that the oncogene product EGFR (epidermal growth factor receptor) phosphorylates argonaute 2 (AGO2), a critical factor in the biogenesis of microRNAs, and that this process is enhanced by hypoxia. This modification of AGO2 impairs microRNA processing, but promotes cell survival and invasiveness. Breast cancer patients with higher phospho-AGO2 content show a poorer outcome. MicroRNAs (miRNAs) are generated by two-step processing to yield small RNAs that negatively regulate target gene expression at the post-transcriptional level1. Deregulation of miRNAs has been linked to diverse pathological processes, including cancer2,3. Recent studies have also implicated miRNAs in the regulation of cellular response to a spectrum of stresses4, such as hypoxia, which is frequently encountered in the poorly angiogenic core of a solid tumour5. However, the upstream regulators of miRNA biogenesis machineries remain obscure, raising the question of how tumour cells efficiently coordinate and impose specificity on miRNA expression and function in response to stresses. Here we show that epidermal growth factor receptor (EGFR), which is the product of a well-characterized oncogene in human cancers, suppresses the maturation of specific tumour-suppressor-like miRNAs in response to hypoxic stress through phosphorylation of argonaute 2 (AGO2) at Tyr 393. The association between EGFR and AGO2 is enhanced by hypoxia, leading to elevated AGO2-Y393 phosphorylation, which in turn reduces the binding of Dicer to AGO2 and inhibits miRNA processing from precursor miRNAs to mature miRNAs. We also identify a long-loop structure in precursor miRNAs as a critical regulatory element in phospho-Y393-AGO2-mediated miRNA maturation. Furthermore, AGO2-Y393 phosphorylation mediates EGFR-enhanced cell survival and invasiveness under hypoxia, and correlates with poorer overall survival in breast cancer patients. Our study reveals a previously unrecognized function of EGFR in miRNA maturation and demonstrates how EGFR is likely to function as a regulator of AGO2 through novel post-translational modification. These findings suggest that modulation of miRNA biogenesis is important for stress response in tumour cells and has potential clinical implications.
0
Citation340
0
Save
0

Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade

Ying Zhu et al.Mar 22, 2019
In the tumour microenvironment, critical drivers of immune escape include the oncogenic activity of the tumour cell-intrinsic osteopontin (OPN), the expression of programmed death ligand 1 (PD-L1) and the expansion of tumour-associated macrophages (TAMs). We investigated the feasibility of targeting these pathways as a therapeutic option in hepatocellular carcinoma (HCC) mouse models.We analysed the number of tumour-infiltrating immune cells and the inflammatory immune profiles in chemically induced liver tumour isolated from wild-type and OPNknockout (KO) mice. In vitro cell cocultures were further conducted to investigate the crosstalk between TAMs and HCC cells mediated by OPN, colony stimulating factor-1 (CSF1) and CSF1 receptor (CSF1R). The in vivo efficacy of anti-PD-L1 and CSF1/CSF1R inhibition was evaluated in OPN overexpressing subcutaneous or orthotopic mouse model of HCC.The numbers of TAMs, as well as the expression levels of M2 macrophage markers and PD-L1 were significantly decreased, but the levels of cytokines produced by T-helper 1 (Th1) cells were upregulated in tumour tissues from OPN KO mice compared with that from the controls. In addition, we observed a positive association between the OPN and PD-L1 expression, and OPN expression and TAM infiltration in tumour tissues from patients with HCC. We further demonstrated that OPN facilitates chemotactic migration, and alternative activation of macrophages, and promotes the PD-L1 expression in HCC via activation of the CSF1-CSF1R pathway in macrophages. Combining anti-PD-L1 and CSF1R inhibition elicited potent antitumour activity and prolonged survival of OPNhigh tumour-bearing mice. Histological, flow cytometric and ELISA revealed increased CD8+ T cell infiltration, reduced TAMs and enhanced Th1/Th2 cytokine balance in multiple mouse models of HCC.OPN/CSF1/CSF1R axis plays a critical role in the immunosuppressive nature of the HCC microenvironment. Blocking CSF1/CSF1R prevents TAM trafficking and thereby enhances the efficacy of immune checkpoint inhibitors for the treatment of HCC.
0

EGFR Signaling Enhances Aerobic Glycolysis in Triple-Negative Breast Cancer Cells to Promote Tumor Growth and Immune Escape

Seung-Oe Lim et al.Jan 13, 2016
Oncogenic signaling reprograms cancer cell metabolism to augment the production of glycolytic metabolites in favor of tumor growth. The ability of cancer cells to evade immunosurveillance and the role of metabolic regulators in T-cell functions suggest that oncogene-induced metabolic reprogramming may be linked to immune escape. EGF signaling, frequently dysregulated in triple-negative breast cancer (TNBC), is also associated with increased glycolysis. Here, we demonstrated in TNBC cells that EGF signaling activates the first step in glycolysis, but impedes the last step, leading to an accumulation of metabolic intermediates in this pathway. Furthermore, we showed that one of these intermediates, fructose 1,6 bisphosphate (F1,6BP), directly binds to and enhances the activity of the EGFR, thereby increasing lactate excretion, which leads to inhibition of local cytotoxic T-cell activity. Notably, combining the glycolysis inhibitor 2-deoxy-d-glucose with the EGFR inhibitor gefitinib effectively suppressed TNBC cell proliferation and tumor growth. Our results illustrate how jointly targeting the EGFR/F1,6BP signaling axis may offer an immediately applicable therapeutic strategy to treat TNBC.
0
Citation220
0
Save