Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
JL
Jacob Lalley
Author with expertise in Nanotoxicology and Antimicrobial Nanoparticles
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(25% Open Access)
Cited by:
1,034
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Phosphate adsorption using modified iron oxide-based sorbents in lake water: Kinetics, equilibrium, and column tests

Jacob Lalley et al.Sep 2, 2015
Adsorption behavior of Bayoxide® E33 (E33) and three E33-modified sorbents for the removal of phosphate from lake water was investigated in this study. E33-modified sorbents were synthesized by coating with manganese (E33/Mn) and silver (E33/AgI and E33/AgII) nanoparticles. Adsorbent characterization was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), surface area analyzer (BET), transmission electron microscopy (TEM), and high resolution TEM (HR-TEM) analysis. Batch, equilibrium, and column experiments were conducted to determine various adsorption parameters. Equilibrium data were fitted to different adsorption isotherms and the Langmuir isotherm provided the best fit. Based on the Langmuir model, it was found that E33/AgII had a slightly higher maximum monolayer adsorption capacity (38.8 mg g−1) when compared to unmodified E33 (37.7 mg g−1). Data for adsorption kinetics were found to best fit with the pseudo-second-order model, suggesting chemisorption is the mechanism of sorption. Intra-particle diffusion studies indicated that the rate-limiting step for phosphate sorption onto E33 and modified E33 was intra-particle diffusion. Although limited improvements were seen, the results of this study suggest that the surface of E33 can be modified with nanoparticles to enhance the adsorption of phosphate from aqueous solutions and may give other advantages such as limiting biofouling over an extended lifetime of numerous recovery/regeneration steps.
0

Highly Efficient Adsorption of Emerging Freshwater Saxitoxins with Graphene

Jesse Roberts et al.Jan 9, 2025
The rapid proliferation of saxitoxin (STX)-producing cyanobacteria in freshwater ecosystems poses an emerging threat to global drinking water security. STXs (STX), produced by these harmful algal blooms, are a class of potent neurotoxic alkaloids that exhibit resistance to conventional water treatment processes like oxidation. Adsorption using carbon-based materials is recommended for STX removal, but current adsorbents have limited efficacy. Here, we demonstrate that mesoporous graphene nanoplatelets (GnPs) are a superior adsorbent for STX, outperforming granular activated carbon (GAC) and other benchmarks in both kinetics and capacity. GnPs achieved a 93.5-fold higher adsorption capacity and over 6-fold faster kinetics compared to GAC. The exceptional performance of GnPs is attributed to their high surface area, favorable surface chemistry, and optimized pore structure that facilitate rapid and extensive STX adsorption through Ï€â€“Ï€ interactions, electrostatic attraction, and intraparticle diffusion. Mechanistic studies revealed a critical role of solution conditions, with higher pH and lower ionic strength enhancing STX removal by promoting electrostatic interactions. GnPs also demonstrated excellent performance in simulated field water, maintaining >90% removal within 1 h even in the presence of competitive organics. This study highlights the immense potential of GnPs as an advanced adsorbent for mitigating the rising threat of STX contamination in drinking water.