A novel efficient Ag@AgCl/g-C3N4 plasmonic photocatalyst was synthesized by a rational in situ ion exchange approach between exfoliated g-C3N4 nanosheets with porous 2D morphology and AgNO3. The as-prepared Ag@AgCl-9/g-C3N4 plasmonic photocatalyst exhibited excellent photocatalytic performance under visible light irradiation for rhodamine B degradation with a rate constant of 0.1954 min–1, which is ∼41.6 and ∼16.8 times higher than those of the g-C3N4 (∼0.0047 min–1) and Ag/AgCl (∼0.0116 min–1), respectively. The degradation of methylene blue, methyl orange, and colorless phenol further confirmed the broad spectrum photocatalytic degradation abilities of Ag@AgCl-9/g-C3N4. These results suggested that an integration of the synergetic effect of suitable size plasmonic Ag@AgCl and strong coupling effect between the Ag@AgCl nanoparticles and the exfoliated porous g-C3N4 nanosheets was superior for visible-light-responsive and fast separation of photogenerated electron–hole pairs, thus significantly improving the photocatalytic efficiency. This work may provide a novel concept for the rational design of stable and high performance g-C3N4-based plasmonic photocatalysts for unique photochemical reaction.